Mercurial > repos > public > sbplib_julia
changeset 753:fc83d672be36 feature/laplace_opset
Minor cleanup of code
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 19 Mar 2021 17:13:04 +0100 |
parents | ff0ef711c388 |
children | dc38e57ebd1b |
files | src/SbpOperators/volumeops/laplace/laplace.jl test/SbpOperators/volumeops/laplace/laplace_test.jl |
diffstat | 2 files changed, 19 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Fri Mar 19 17:12:43 2021 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Fri Mar 19 17:13:04 2021 +0100 @@ -43,9 +43,9 @@ # Boundary operator - id pairs ids = boundary_identifiers(grid) n_ids = length(ids) - e_pairs = ntuple(i -> Pair(ids[i],boundary_restriction(grid,e_closure_stencil,ids[i])),n_ids) - d_pairs = ntuple(i -> Pair(ids[i],normal_derivative(grid,d_closure_stencil,ids[i])),n_ids) - Hᵧ_pairs = ntuple(i -> Pair(ids[i],inner_product(boundary_grid(grid,ids[i]),H_closure_stencils)),n_ids) + e_pairs = ntuple(i -> ids[i] => boundary_restriction(grid,e_closure_stencil,ids[i]),n_ids) + d_pairs = ntuple(i -> ids[i] => normal_derivative(grid,d_closure_stencil,ids[i]),n_ids) + Hᵧ_pairs = ntuple(i -> ids[i] => inner_product(boundary_grid(grid,ids[i]),H_closure_stencils),n_ids) return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs)) end
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl Fri Mar 19 17:12:43 2021 +0100 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Fri Mar 19 17:13:04 2021 +0100 @@ -22,15 +22,15 @@ e_l = boundary_restriction(g_1D,op.eClosure,id_l) e_r = boundary_restriction(g_1D,op.eClosure,id_r) - e_dict = StaticDict(Pair(id_l,e_l),Pair(id_r,e_r)) + e_dict = StaticDict(id_l => e_l, id_r => e_r) d_l = normal_derivative(g_1D,op.dClosure,id_l) d_r = normal_derivative(g_1D,op.dClosure,id_r) - d_dict = StaticDict(Pair(id_l,d_l),Pair(id_r,d_r)) + d_dict = StaticDict(id_l => d_l, id_r => d_r) H_l = inner_product(boundary_grid(g_1D,id_l),op.quadratureClosure) H_r = inner_product(boundary_grid(g_1D,id_r),op.quadratureClosure) - Hb_dict = StaticDict(Pair(id_l,H_l),Pair(id_r,H_r)) + Hb_dict = StaticDict(id_l => H_l, id_r => H_r) L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4) @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) @@ -44,16 +44,15 @@ Hi = inverse_inner_product(g_3D, op.quadratureClosure) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) - e_l = boundary_restriction(g_3D,op.eClosure,id_l) e_r = boundary_restriction(g_3D,op.eClosure,id_r) e_s = boundary_restriction(g_3D,op.eClosure,id_s) e_n = boundary_restriction(g_3D,op.eClosure,id_n) e_b = boundary_restriction(g_3D,op.eClosure,id_b) e_t = boundary_restriction(g_3D,op.eClosure,id_t) - e_dict = StaticDict(Pair(id_l,e_l),Pair(id_r,e_r), - Pair(id_s,e_s),Pair(id_n,e_n), - Pair(id_b,e_b),Pair(id_t,e_t)) + e_dict = StaticDict(id_l => e_l, id_r => e_r, + id_s => e_s, id_n => e_n, + id_b => e_b, id_t => e_t) d_l = normal_derivative(g_3D,op.dClosure,id_l) d_r = normal_derivative(g_3D,op.dClosure,id_r) @@ -61,9 +60,9 @@ d_n = normal_derivative(g_3D,op.dClosure,id_n) d_b = normal_derivative(g_3D,op.dClosure,id_b) d_t = normal_derivative(g_3D,op.dClosure,id_t) - d_dict = StaticDict(Pair(id_l,d_l),Pair(id_r,d_r), - Pair(id_s,d_s),Pair(id_n,d_n), - Pair(id_b,d_b),Pair(id_t,d_t)) + d_dict = StaticDict(id_l => d_l, id_r => d_r, + id_s => d_s, id_n => d_n, + id_b => d_b, id_t => d_t) H_l = inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) H_r = inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) @@ -71,9 +70,9 @@ H_n = inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) H_b = inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) H_t = inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) - Hb_dict = StaticDict(Pair(id_l,H_l),Pair(id_r,H_r), - Pair(id_s,H_s),Pair(id_n,H_n), - Pair(id_b,H_b),Pair(id_t,H_t)) + Hb_dict = StaticDict(id_l => H_l, id_r => H_r, + id_s => H_s, id_n => H_n, + id_b => H_b, id_t => H_t) L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) @@ -111,12 +110,8 @@ @testset "boundary_restriction" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) - id_l = CartesianBoundary{1,Lower}() - id_r = CartesianBoundary{1,Upper}() - id_s = CartesianBoundary{2,Lower}() - id_n = CartesianBoundary{2,Upper}() - id_b = CartesianBoundary{3,Lower}() - id_t = CartesianBoundary{3,Upper}() + (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) + ids = boundary_identifiers(g_3D) @test boundary_restriction(L,id_l) == boundary_restriction(g_3D,op.eClosure,id_l) @test boundary_restriction(L,id_r) == boundary_restriction(g_3D,op.eClosure,id_r) @test boundary_restriction(L,id_s) == boundary_restriction(g_3D,op.eClosure,id_s) @@ -127,12 +122,7 @@ @testset "normal_derivative" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) - id_l = CartesianBoundary{1,Lower}() - id_r = CartesianBoundary{1,Upper}() - id_s = CartesianBoundary{2,Lower}() - id_n = CartesianBoundary{2,Upper}() - id_b = CartesianBoundary{3,Lower}() - id_t = CartesianBoundary{3,Upper}() + (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) @test normal_derivative(L,id_l) == normal_derivative(g_3D,op.dClosure,id_l) @test normal_derivative(L,id_r) == normal_derivative(g_3D,op.dClosure,id_r) @test normal_derivative(L,id_s) == normal_derivative(g_3D,op.dClosure,id_s) @@ -143,12 +133,7 @@ @testset "boundary_quadrature" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) - id_l = CartesianBoundary{1,Lower}() - id_r = CartesianBoundary{1,Upper}() - id_s = CartesianBoundary{2,Lower}() - id_n = CartesianBoundary{2,Upper}() - id_b = CartesianBoundary{3,Lower}() - id_t = CartesianBoundary{3,Upper}() + (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) @test boundary_quadrature(L,id_l) == inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) @test boundary_quadrature(L,id_r) == inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) @test boundary_quadrature(L,id_s) == inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure)