Mercurial > repos > public > sbplib_julia
changeset 667:f3a0d1f7d842 feature/laplace_opset
Make Laplace a type storing relevant operators used when writing a scheme, e.g. quadratures, normal derivatives etc.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 31 Jan 2021 21:04:02 +0100 |
parents | 94fe0761e6f9 |
children | 2d56a53a1646 |
files | src/SbpOperators/volumeops/laplace/laplace.jl |
diffstat | 1 files changed, 75 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Sun Jan 31 20:59:29 2021 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Sun Jan 31 21:04:02 2021 +0100 @@ -1,5 +1,77 @@ """ - Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) + Laplace{T,Dim,...}() + Laplace(grid::EquidistantGrid, fn; order) + +Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a +`TensorMapping`. Additionally, `Laplace` stores the quadrature, and boundary +operators relevant for constructing a SBP finite difference scheme as `TensorMapping`s. +""" +struct Laplace{T, Dim, Rb, TMdiffop<:TensorMapping{T,Dim,Dim}, # Differential operator tensor mapping + TMqop<:TensorMapping{T,Dim,Dim}, # Quadrature operator tensor mapping + TMbop<:TensorMapping{T,Rb,Dim}, # Boundary operator tensor mapping + TMbqop<:TensorMapping{T,Rb,Rb}, # Boundary quadrature tensor mapping + BID<:BoundaryIdentifier} <: TensorMapping{T,Dim,Dim} + D::TMdiffop # Difference operator + H::TMqop # Quadrature (norm) operator + H_inv::TMqop # Inverse quadrature (norm) operator + e::Dict{BID,TMbop} # Boundary restriction operators + d::Dict{BID,TMbop} # Normal derivative operators + H_boundary::Dict{BID,TMbqop} # Boundary quadrature operators +end +export Laplace + +function Laplace(grid::EquidistantGrid, fn; order) + # TODO: Removed once we can construct the volume and + # boundary operators by op(grid, fn; order,...). + # Read stencils + op = read_D2_operator(fn; order) + D_inner_stecil = op.innerStencil + D_closure_stencils = op.closureStencils + H_closure_stencils = op.quadratureClosure + e_closure_stencil = op.eClosure + d_closure_stencil = op.dClosure + + # Volume operators + Δ = laplace(grid, D_inner_stecil, D_closure_stencils) + H = DiagonalQuadrature(grid, H_closure_stencils) + H⁻¹ = InverseDiagonalQuadrature(grid, H_closure_stencils) + + # Pair boundary operators and boundary quadratures with the boundary ids + e_pairs = () + d_pairs = () + Hᵧ_pairs = () + dims = collect(1:dimension(grid)) + for id ∈ boundary_identifiers(grid) + # Boundary operators + e_pairs = (e_pairs...,Pair(id,BoundaryRestriction(grid,e_closure_stencil,id))) + d_pairs = (d_pairs...,Pair(id,NormalDerivative(grid,d_closure_stencil,id))) + # Boundary quadratures + # Construct these on the lower-dimensional grid in the + # coordinite directions orthogonal to dim(id) + orth_dims = dims[dims .!= dim(id)] + orth_grid = restrict(grid,orth_dims) + Hᵧ_pairs = (Hᵧ_pairs...,Pair(id,DiagonalQuadrature(orth_grid,H_closure_stencils))) + end + return Laplace(Δ, H, H⁻¹, Dict(e_pairs), Dict(d_pairs), Dict(Hᵧ_pairs)) +end + +LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) +LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) +LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) + +quadrature(L::Laplace) = L.H +export quadrature +inverse_quadrature(L::Laplace) = L.H_inv +export inverse_quadrature +boundary_restriction(L::Laplace,bid::BoundaryIdentifier) = L.e[bid] +export boundary_restriction +normal_derivative(L::Laplace,bid::BoundaryIdentifier) = L.d[bid] +export normal_derivative +boundary_quadrature(L::Laplace,bid::BoundaryIdentifier) = L.H_boundary[bid] +export boundary_quadrature + +""" + laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) Creates the Laplace operator operator `Δ` as a `TensorMapping` @@ -10,11 +82,11 @@ On a one-dimensional `grid`, `Δ` is a `SecondDerivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `SecondDerivative`s where the sum is carried out lazily. """ -function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim +function laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1) for d = 2:Dim Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d) end return Δ end -export Laplace +export laplace