Mercurial > repos > public > sbplib_julia
changeset 247:ed29ee13e92e boundary_conditions
Restructure laplace.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 27 Jun 2019 09:43:44 +0200 |
parents | a827568fc251 |
children | 05e7bbe0af97 |
files | DiffOps/src/laplace.jl |
diffstat | 1 files changed, 60 insertions(+), 58 deletions(-) [+] |
line wrap: on
line diff
--- a/DiffOps/src/laplace.jl Wed Jun 26 21:22:36 2019 +0200 +++ b/DiffOps/src/laplace.jl Thu Jun 27 09:43:44 2019 +0200 @@ -1,40 +1,39 @@ -""" - NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} - -Implements the boundary operator `d` as a TensorMapping -""" -struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} - op::D2{T,N,M,K} - grid::EquidistantGrid - bId::CartesianBoundary +struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} + grid::EquidistantGrid{Dim,T} + a::T + op::D2{Float64,N,M,K} + # e::BoundaryValue + # d::NormalDerivative end -export NormalDerivative -# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? -# Can we give special treatment to TensorMappings that go to a higher dim? -LazyTensors.range_size(e::NormalDerivative{T}, domain_size::NTuple{1,Integer}) where T = size(e.grid) -LazyTensors.domain_size(e::NormalDerivative{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) +function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim + error("not implemented") +end -# Not correct abstraction level -# TODO: Not type stable D:< -function LazyTensors.apply(d::NormalDerivative, v::AbstractArray, I::NTuple{2,Int}) - i = I[dim(d.bId)] - j = I[3-dim(d.bId)] - N_i = size(d.grid)[dim(d.bId)] - - if region(d.bId) == Lower - # Note, closures are indexed by offset. Fix this D:< - return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j] - elseif region(d.bId) == Upper - return -d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-i]*v[j] - end +# u = L*v +function apply(L::Laplace{1}, v::AbstractVector, i::Int) + uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i) + return uᵢ end -function LazyTensors.apply_transpose(d::NormalDerivative, v::AbstractArray, I::NTuple{1,Int}) - u = selectdim(v,3-dim(d.bId),I[1]) - return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) +@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} + # 2nd x-derivative + @inbounds vx = view(v, :, Int(I[2])) + @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) + # 2nd y-derivative + @inbounds vy = view(v, Int(I[1]), :) + @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) + # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors + return uᵢ end +# Slow but maybe convenient? +function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) + I = Index{Unknown}.(Tuple(i)) + apply(L, v, I) +end + + """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} @@ -73,40 +72,43 @@ -struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} - grid::EquidistantGrid{Dim,T} - a::T - op::D2{Float64,N,M,K} - # e::BoundaryValue - # d::NormalDerivative +""" + NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} + +Implements the boundary operator `d` as a TensorMapping +""" +struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} + op::D2{T,N,M,K} + grid::EquidistantGrid + bId::CartesianBoundary end +export NormalDerivative -function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim - error("not implemented") +# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# Can we give special treatment to TensorMappings that go to a higher dim? +LazyTensors.range_size(e::NormalDerivative{T}, domain_size::NTuple{1,Integer}) where T = size(e.grid) +LazyTensors.domain_size(e::NormalDerivative{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) + +# Not correct abstraction level +# TODO: Not type stable D:< +function LazyTensors.apply(d::NormalDerivative, v::AbstractArray, I::NTuple{2,Int}) + i = I[dim(d.bId)] + j = I[3-dim(d.bId)] + N_i = size(d.grid)[dim(d.bId)] + + if region(d.bId) == Lower + # Note, closures are indexed by offset. Fix this D:< + return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j] + elseif region(d.bId) == Upper + return -d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-i]*v[j] + end end -# u = L*v -function apply(L::Laplace{1}, v::AbstractVector, i::Int) - uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i) - return uᵢ +function LazyTensors.apply_transpose(d::NormalDerivative, v::AbstractArray, I::NTuple{1,Int}) + u = selectdim(v,3-dim(d.bId),I[1]) + return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) end -@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} - # 2nd x-derivative - @inbounds vx = view(v, :, Int(I[2])) - @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) - # 2nd y-derivative - @inbounds vy = view(v, Int(I[1]), :) - @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) - # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors - return uᵢ -end - -# Slow but maybe convenient? -function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) - I = Index{Unknown}.(Tuple(i)) - apply(L, v, I) -end struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end