changeset 618:c64793f77509 feature/volume_and_boundary_operators

Move Laplace and SecondDerivative into the volumeops directory
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 07 Dec 2020 12:16:09 +0100
parents f59e1732eacc
children 332f65c1abf3
files src/SbpOperators/SbpOperators.jl src/SbpOperators/laplace/laplace.jl src/SbpOperators/laplace/secondderivative.jl src/SbpOperators/volumeops/derivatives/secondderivative.jl src/SbpOperators/volumeops/laplace/laplace.jl
diffstat 5 files changed, 122 insertions(+), 122 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl	Mon Dec 07 12:07:29 2020 +0100
+++ b/src/SbpOperators/SbpOperators.jl	Mon Dec 07 12:16:09 2020 +0100
@@ -9,8 +9,8 @@
 include("d2.jl")
 include("readoperator.jl")
 include("volumeops/volume_operator.jl")
-include("laplace/secondderivative.jl")
-include("laplace/laplace.jl")
+include("volumeops/derivatives/secondderivative.jl")
+include("volumeops/laplace/laplace.jl")
 include("quadrature/diagonal_inner_product.jl")
 include("quadrature/quadrature.jl")
 include("quadrature/inverse_diagonal_inner_product.jl")
--- a/src/SbpOperators/laplace/laplace.jl	Mon Dec 07 12:07:29 2020 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,114 +0,0 @@
-# """
-#     Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-#
-# Implements the Laplace operator `L` in Dim dimensions as a tensor operator
-# The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative
-# tensor operators.
-# """
-function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim
-    Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1)
-    for d = 2:Dim
-        Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d)
-    end
-    return Δ
-end
-export Laplace
-
-# quadrature(L::Laplace) = Quadrature(L.op, L.grid)
-# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
-# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
-# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
-# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
-# export NormalDerivative
-# """
-#     NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
-#
-# Implements the boundary operator `d` as a TensorMapping
-# """
-# struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
-#     op::D2{T,N,M,K}
-#     grid::EquidistantGrid{2}
-#     bId::CartesianBoundary
-# end
-#
-# # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
-# # Can we give special treatment to TensorMappings that go to a higher dim?
-# function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer})
-#     if dim(e.bId) == 1
-#         return (UnknownDim, domain_size[1])
-#     elseif dim(e.bId) == 2
-#         return (domain_size[1], UnknownDim)
-#     end
-# end
-# LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],)
-#
-# # TODO: Not type stable D:<
-# # TODO: Make this independent of dimension
-# function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
-#     i = I[dim(d.bId)]
-#     j = I[3-dim(d.bId)]
-#     N_i = size(d.grid)[dim(d.bId)]
-#     h_inv = inverse_spacing(d.grid)[dim(d.bId)]
-#     return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId))
-# end
-#
-# function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
-#     u = selectdim(v,3-dim(d.bId),Int(I[1]))
-#     return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId))
-# end
-#
-# """
-#     BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
-#
-# Implements the boundary operator `q` as a TensorOperator
-# """
-# export BoundaryQuadrature
-# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
-#     op::D2{T,N,M,K}
-#     grid::EquidistantGrid{2}
-#     bId::CartesianBoundary
-# end
-#
-#
-# # TODO: Make this independent of dimension
-# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
-#     h = spacing(q.grid)[3-dim(q.bId)]
-#     N = size(v)
-#     return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
-# end
-#
-# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
-#
-#
-#
-#
-# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
-#
-# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
-#     e = boundary_value(L, Bid())
-#     d = normal_derivative(L, Bid())
-#     Hᵧ = boundary_quadrature(L, Bid())
-#     H⁻¹ = inverse_quadrature(L)
-#     return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
-# end
-#
-# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
-#     tau::Float64
-# end
-#
-# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
-#     e = boundary_value(L, Bid())
-#     d = normal_derivative(L, Bid())
-#     Hᵧ = boundary_quadrature(L, Bid())
-#     H⁻¹ = inverse_quadrature(L)
-#     return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
-#     # Need to handle scalar multiplication and addition of TensorMapping
-# end
-
-# function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
-    #   return apply(s.L, v, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau),  v, s.g_w, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau),  v, s.g_e, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau),  v, s.g_s, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau),  v, s.g_n, i)
-# end
--- a/src/SbpOperators/laplace/secondderivative.jl	Mon Dec 07 12:07:29 2020 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-function SecondDerivative(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils, direction) where Dim
-    h_inv = inverse_spacing(grid)[direction]
-    return volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), even, direction)
-end
-SecondDerivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = SecondDerivative(grid,inner_stencil,closure_stencils,1)
-export SecondDerivative
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/derivatives/secondderivative.jl	Mon Dec 07 12:16:09 2020 +0100
@@ -0,0 +1,6 @@
+function SecondDerivative(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils, direction) where Dim
+    h_inv = inverse_spacing(grid)[direction]
+    return volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), even, direction)
+end
+SecondDerivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = SecondDerivative(grid,inner_stencil,closure_stencils,1)
+export SecondDerivative
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/laplace/laplace.jl	Mon Dec 07 12:16:09 2020 +0100
@@ -0,0 +1,114 @@
+# """
+#     Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+#
+# Implements the Laplace operator `L` in Dim dimensions as a tensor operator
+# The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative
+# tensor operators.
+# """
+function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim
+    Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1)
+    for d = 2:Dim
+        Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d)
+    end
+    return Δ
+end
+export Laplace
+
+# quadrature(L::Laplace) = Quadrature(L.op, L.grid)
+# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
+# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
+# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
+# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
+# export NormalDerivative
+# """
+#     NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
+#
+# Implements the boundary operator `d` as a TensorMapping
+# """
+# struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
+#     op::D2{T,N,M,K}
+#     grid::EquidistantGrid{2}
+#     bId::CartesianBoundary
+# end
+#
+# # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
+# # Can we give special treatment to TensorMappings that go to a higher dim?
+# function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer})
+#     if dim(e.bId) == 1
+#         return (UnknownDim, domain_size[1])
+#     elseif dim(e.bId) == 2
+#         return (domain_size[1], UnknownDim)
+#     end
+# end
+# LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],)
+#
+# # TODO: Not type stable D:<
+# # TODO: Make this independent of dimension
+# function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
+#     i = I[dim(d.bId)]
+#     j = I[3-dim(d.bId)]
+#     N_i = size(d.grid)[dim(d.bId)]
+#     h_inv = inverse_spacing(d.grid)[dim(d.bId)]
+#     return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId))
+# end
+#
+# function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
+#     u = selectdim(v,3-dim(d.bId),Int(I[1]))
+#     return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId))
+# end
+#
+# """
+#     BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
+#
+# Implements the boundary operator `q` as a TensorOperator
+# """
+# export BoundaryQuadrature
+# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
+#     op::D2{T,N,M,K}
+#     grid::EquidistantGrid{2}
+#     bId::CartesianBoundary
+# end
+#
+#
+# # TODO: Make this independent of dimension
+# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
+#     h = spacing(q.grid)[3-dim(q.bId)]
+#     N = size(v)
+#     return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
+# end
+#
+# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
+#
+#
+#
+#
+# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
+#
+# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
+#     e = boundary_value(L, Bid())
+#     d = normal_derivative(L, Bid())
+#     Hᵧ = boundary_quadrature(L, Bid())
+#     H⁻¹ = inverse_quadrature(L)
+#     return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
+# end
+#
+# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
+#     tau::Float64
+# end
+#
+# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
+#     e = boundary_value(L, Bid())
+#     d = normal_derivative(L, Bid())
+#     Hᵧ = boundary_quadrature(L, Bid())
+#     H⁻¹ = inverse_quadrature(L)
+#     return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
+#     # Need to handle scalar multiplication and addition of TensorMapping
+# end
+
+# function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
+    #   return apply(s.L, v, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau),  v, s.g_w, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau),  v, s.g_e, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau),  v, s.g_s, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau),  v, s.g_n, i)
+# end