Mercurial > repos > public > sbplib_julia
changeset 618:c64793f77509 feature/volume_and_boundary_operators
Move Laplace and SecondDerivative into the volumeops directory
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 07 Dec 2020 12:16:09 +0100 |
parents | f59e1732eacc |
children | 332f65c1abf3 |
files | src/SbpOperators/SbpOperators.jl src/SbpOperators/laplace/laplace.jl src/SbpOperators/laplace/secondderivative.jl src/SbpOperators/volumeops/derivatives/secondderivative.jl src/SbpOperators/volumeops/laplace/laplace.jl |
diffstat | 5 files changed, 122 insertions(+), 122 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl Mon Dec 07 12:07:29 2020 +0100 +++ b/src/SbpOperators/SbpOperators.jl Mon Dec 07 12:16:09 2020 +0100 @@ -9,8 +9,8 @@ include("d2.jl") include("readoperator.jl") include("volumeops/volume_operator.jl") -include("laplace/secondderivative.jl") -include("laplace/laplace.jl") +include("volumeops/derivatives/secondderivative.jl") +include("volumeops/laplace/laplace.jl") include("quadrature/diagonal_inner_product.jl") include("quadrature/quadrature.jl") include("quadrature/inverse_diagonal_inner_product.jl")
--- a/src/SbpOperators/laplace/laplace.jl Mon Dec 07 12:07:29 2020 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,114 +0,0 @@ -# """ -# Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} -# -# Implements the Laplace operator `L` in Dim dimensions as a tensor operator -# The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative -# tensor operators. -# """ -function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim - Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1) - for d = 2:Dim - Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d) - end - return Δ -end -export Laplace - -# quadrature(L::Laplace) = Quadrature(L.op, L.grid) -# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) -# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) -# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) -# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) -# export NormalDerivative -# """ -# NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} -# -# Implements the boundary operator `d` as a TensorMapping -# """ -# struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} -# op::D2{T,N,M,K} -# grid::EquidistantGrid{2} -# bId::CartesianBoundary -# end -# -# # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? -# # Can we give special treatment to TensorMappings that go to a higher dim? -# function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer}) -# if dim(e.bId) == 1 -# return (UnknownDim, domain_size[1]) -# elseif dim(e.bId) == 2 -# return (domain_size[1], UnknownDim) -# end -# end -# LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],) -# -# # TODO: Not type stable D:< -# # TODO: Make this independent of dimension -# function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T -# i = I[dim(d.bId)] -# j = I[3-dim(d.bId)] -# N_i = size(d.grid)[dim(d.bId)] -# h_inv = inverse_spacing(d.grid)[dim(d.bId)] -# return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId)) -# end -# -# function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T -# u = selectdim(v,3-dim(d.bId),Int(I[1])) -# return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId)) -# end -# -# """ -# BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} -# -# Implements the boundary operator `q` as a TensorOperator -# """ -# export BoundaryQuadrature -# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} -# op::D2{T,N,M,K} -# grid::EquidistantGrid{2} -# bId::CartesianBoundary -# end -# -# -# # TODO: Make this independent of dimension -# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T -# h = spacing(q.grid)[3-dim(q.bId)] -# N = size(v) -# return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) -# end -# -# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) -# -# -# -# -# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end -# -# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} -# e = boundary_value(L, Bid()) -# d = normal_derivative(L, Bid()) -# Hᵧ = boundary_quadrature(L, Bid()) -# H⁻¹ = inverse_quadrature(L) -# return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] -# end -# -# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition -# tau::Float64 -# end -# -# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} -# e = boundary_value(L, Bid()) -# d = normal_derivative(L, Bid()) -# Hᵧ = boundary_quadrature(L, Bid()) -# H⁻¹ = inverse_quadrature(L) -# return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] -# # Need to handle scalar multiplication and addition of TensorMapping -# end - -# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D - # return apply(s.L, v, i) + -# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + -# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + -# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + -# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) -# end
--- a/src/SbpOperators/laplace/secondderivative.jl Mon Dec 07 12:07:29 2020 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,6 +0,0 @@ -function SecondDerivative(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils, direction) where Dim - h_inv = inverse_spacing(grid)[direction] - return volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), even, direction) -end -SecondDerivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = SecondDerivative(grid,inner_stencil,closure_stencils,1) -export SecondDerivative
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/volumeops/derivatives/secondderivative.jl Mon Dec 07 12:16:09 2020 +0100 @@ -0,0 +1,6 @@ +function SecondDerivative(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils, direction) where Dim + h_inv = inverse_spacing(grid)[direction] + return volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), even, direction) +end +SecondDerivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = SecondDerivative(grid,inner_stencil,closure_stencils,1) +export SecondDerivative
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Mon Dec 07 12:16:09 2020 +0100 @@ -0,0 +1,114 @@ +# """ +# Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} +# +# Implements the Laplace operator `L` in Dim dimensions as a tensor operator +# The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative +# tensor operators. +# """ +function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim + Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1) + for d = 2:Dim + Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d) + end + return Δ +end +export Laplace + +# quadrature(L::Laplace) = Quadrature(L.op, L.grid) +# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) +# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) +# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) +# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) +# export NormalDerivative +# """ +# NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} +# +# Implements the boundary operator `d` as a TensorMapping +# """ +# struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} +# op::D2{T,N,M,K} +# grid::EquidistantGrid{2} +# bId::CartesianBoundary +# end +# +# # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# # Can we give special treatment to TensorMappings that go to a higher dim? +# function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer}) +# if dim(e.bId) == 1 +# return (UnknownDim, domain_size[1]) +# elseif dim(e.bId) == 2 +# return (domain_size[1], UnknownDim) +# end +# end +# LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],) +# +# # TODO: Not type stable D:< +# # TODO: Make this independent of dimension +# function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T +# i = I[dim(d.bId)] +# j = I[3-dim(d.bId)] +# N_i = size(d.grid)[dim(d.bId)] +# h_inv = inverse_spacing(d.grid)[dim(d.bId)] +# return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId)) +# end +# +# function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T +# u = selectdim(v,3-dim(d.bId),Int(I[1])) +# return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId)) +# end +# +# """ +# BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} +# +# Implements the boundary operator `q` as a TensorOperator +# """ +# export BoundaryQuadrature +# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} +# op::D2{T,N,M,K} +# grid::EquidistantGrid{2} +# bId::CartesianBoundary +# end +# +# +# # TODO: Make this independent of dimension +# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T +# h = spacing(q.grid)[3-dim(q.bId)] +# N = size(v) +# return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) +# end +# +# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) +# +# +# +# +# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end +# +# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} +# e = boundary_value(L, Bid()) +# d = normal_derivative(L, Bid()) +# Hᵧ = boundary_quadrature(L, Bid()) +# H⁻¹ = inverse_quadrature(L) +# return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] +# end +# +# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition +# tau::Float64 +# end +# +# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} +# e = boundary_value(L, Bid()) +# d = normal_derivative(L, Bid()) +# Hᵧ = boundary_quadrature(L, Bid()) +# H⁻¹ = inverse_quadrature(L) +# return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] +# # Need to handle scalar multiplication and addition of TensorMapping +# end + +# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D + # return apply(s.L, v, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) +# end