Mercurial > repos > public > sbplib_julia
changeset 28:32a53cbee6c5
Resolved merge conflict adding plotting function to grid.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 10 Jan 2019 10:38:42 +0100 |
parents | 9031fe054f2c (diff) aff8ea85ca70 (current diff) |
children | 19078a768c5a 2dce28c59429 |
files | grid.jl |
diffstat | 1 files changed, 74 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/grid.jl Thu Jan 10 10:15:27 2019 +0100 +++ b/grid.jl Thu Jan 10 10:38:42 2019 +0100 @@ -4,54 +4,108 @@ abstract type Grid end function numberOfDimensions(grid::Grid) - error("Not yet implemented") + error("Not implemented for abstact type Grid") end function numberOfPoints(grid::Grid) - error("Not yet implemented") + error("Not implemented for abstact type Grid") end function points(grid::Grid) - error("Not yet implemented") + error("Not implemented for abstact type Grid") end +# TODO: Should this be here? abstract type BoundaryId end -# Move to seperate file. +# EquidistantGrid is a grid with equidisant grid spacing per coordinat +# direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ +# by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto +# the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) +# the domain is defined as (-1,1)x(0,2). struct EquidistantGrid <: Grid - nPointsPerDim::Vector{Int} - limits::Vector{Pair{Real, Real}} - function EquidistantGrid(nPointsPerDim, lims) - @assert length(lims) == length(nPointsPerDim) + numberOfPointsPerDim::Tuple # First coordinate direction stored first, then + # second, then third. + limits::NTuple{2,Tuple} # Stores the two points which defines the range of + # the e.g (-1,0) and (1,2) for a domain of size + # (-1,1)x(0,2) + + # General constructor + function EquidistantGrid(nPointsPerDim::Tuple, lims::NTuple{2,Tuple}) + @assert length(nPointsPerDim) > 0 + @assert count(x -> x > 0, nPointsPerDim) == length(nPointsPerDim) + @assert length(lims[1]) == length(nPointsPerDim) + @assert length(lims[2]) == length(nPointsPerDim) + # TODO: Assert that the same values are not passed in both lims[1] and lims[2] + # i.e the domain length is positive for all dimensions return new(nPointsPerDim, lims) end + # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) + function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Integer}) + return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) + end + end +# Returns the number of dimensions of an EquidistantGrid. +# +# @Input: grid - an EquidistantGrid +# @Return: numberOfPoints - The number of dimensions function numberOfDimensions(grid::EquidistantGrid) - return length(grid.nPointsPerDim) + return length(grid.numberOfPointsPerDim) end +# Computes the total number of points of an EquidistantGrid. +# +# @Input: grid - an EquidistantGrid +# @Return: numberOfPoints - The total number of points function numberOfPoints(grid::EquidistantGrid) - numberOfPoints = grid.nPointsPerDim[1]; - for i = 2:length(grid.nPointsPerDim); - numberOfPoints = numberOfPoints*grid.nPointsPerDim[i] + numberOfPoints = grid.numberOfPointsPerDim[1]; + for i = 2:length(grid.numberOfPointsPerDim); + numberOfPoints = numberOfPoints*grid.numberOfPointsPerDim[i] end return numberOfPoints end +# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance +# between two points for each coordinate direction. +# +# @Input: grid - an EquidistantGrid +# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. +function spacings(grid::EquidistantGrid) + h̄ = Vector{Real}(undef, numberOfDimensions(grid)) + for i ∈ eachindex(h̄) + h̄[i] = abs(grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) + end + return Tuple(h̄) +end + +# Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered +# such that points in the first coordinate direction varies first, then the second +# and lastely the third (if applicable) +# +# @Input: grid - an EquidistantGrid +# @Return: points - the points of the grid. function points(grid::EquidistantGrid) - points = Vector{Real}(undef, numberOfPoints(grid)) - for i = 1:numberOfDimensions(grid) - lims = limitsForDimension(grid,i) - points = range(lims.first, stop=lims.second, length=grid.nPointsPerDim[i]) + # Compute signed grid spacings + dx̄ = Vector{Real}(undef, numberOfDimensions(grid)) + for i ∈ eachindex(dx̄) + dx̄[i] = (grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) + end + dx̄ = Tuple(dx̄) + + nPoints = numberOfPoints(grid) + points = Vector{NTuple{numberOfDimensions(grid),Real}}(undef, nPoints) + # Compute the points based on their Cartesian indices and the signed + # grid spacings + cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) + for i ∈ 1:nPoints + ci = Tuple(cartesianIndices[i]) .-1 + points[i] = grid.limits[1] .+ dx̄.*ci end return points end -function limitsForDimension(grid::EquidistantGrid, dim::Int) - return grid.limits[dim] -end - function plotOnGrid(grid::EquidistantGrid,v::Vector) dim = numberOfDimensions(grid) x = points(grid)