changeset 1430:9fc3c1af33e5 feature/grids/curvilinear

Add testsets and a few tests
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 26 Jul 2023 21:00:44 +0200
parents e87f3465b770
children 6adf31ba6cfd
files src/Grids/curvilinear_grid.jl test/Grids/curvilinear_grid_test.jl
diffstat 2 files changed, 161 insertions(+), 2 deletions(-) [+]
line wrap: on
line diff
--- a/src/Grids/curvilinear_grid.jl	Fri Aug 25 08:57:27 2023 +0200
+++ b/src/Grids/curvilinear_grid.jl	Wed Jul 26 21:00:44 2023 +0200
@@ -1,1 +1,84 @@
-struct CurvilinearGrid end
+struct CurvilinearGrid{T,D, GT<:Grid{<:Any,D}, CT<:AbstractArray{T,D}, JT<:AbstractArray{<:AbstractArray{<:Any, 2}, D}} <: Grid{T,D}
+    logicalgrid::GT
+    physicalcoordinates::CT
+    Jacobian::JT
+end
+
+
+# Indexing interface
+Base.getindex(g::CurvilinearGrid, I...) = g.physicalcoordinates[I...]
+
+# function Base.getindex(g::TensorGrid, I...)
+#     szs = ndims.(g.grids)
+
+#     Is = LazyTensors.split_tuple(I, szs)
+#     ps = map((g,I)->SVector(g[I...]), g.grids, Is)
+
+#     return vcat(ps...)
+# end
+
+# function Base.eachindex(g::TensorGrid)
+#     szs = LazyTensors.concatenate_tuples(size.(g.grids)...)
+#     return CartesianIndices(szs)
+# end
+
+# # Iteration interface
+# Base.iterate(g::TensorGrid) = iterate(Iterators.product(g.grids...)) |> _iterate_combine_coords
+# Base.iterate(g::TensorGrid, state) = iterate(Iterators.product(g.grids...), state) |> _iterate_combine_coords
+# _iterate_combine_coords(::Nothing) = nothing
+# _iterate_combine_coords((next,state)) = combine_coordinates(next...), state
+
+# Base.IteratorSize(::Type{<:TensorGrid{<:Any, D}}) where D = Base.HasShape{D}()
+# Base.eltype(::Type{<:TensorGrid{T}}) where T = T
+# Base.length(g::TensorGrid) = sum(length, g.grids)
+# Base.size(g::TensorGrid) = LazyTensors.concatenate_tuples(size.(g.grids)...)
+
+
+# refine(g::TensorGrid, r::Int) = mapreduce(g->refine(g,r), TensorGrid, g.grids)
+# coarsen(g::TensorGrid, r::Int) = mapreduce(g->coarsen(g,r), TensorGrid, g.grids)
+
+# """
+#     TensorGridBoundary{N, BID} <: BoundaryIdentifier
+
+# A boundary identifier for a tensor grid. `N` Specifies which grid in the
+# tensor product and `BID` which boundary on that grid.
+# """
+# struct TensorGridBoundary{N, BID} <: BoundaryIdentifier end
+# grid_id(::TensorGridBoundary{N, BID}) where {N, BID} = N
+# boundary_id(::TensorGridBoundary{N, BID}) where {N, BID} = BID()
+
+# """
+#     boundary_identifiers(g::TensorGrid)
+
+# Returns a tuple containing the boundary identifiers of `g`.
+# """
+# function boundary_identifiers(g::TensorGrid)
+#     per_grid = map(eachindex(g.grids)) do i
+#         return map(bid -> TensorGridBoundary{i, typeof(bid)}(), boundary_identifiers(g.grids[i]))
+#     end
+#     return LazyTensors.concatenate_tuples(per_grid...)
+# end
+
+
+# """
+#     boundary_grid(g::TensorGrid, id::TensorGridBoundary)
+
+# The grid for the boundary of `g` specified by `id`.
+# """
+# function boundary_grid(g::TensorGrid, id::TensorGridBoundary)
+#     local_boundary_grid = boundary_grid(g.grids[grid_id(id)], boundary_id(id))
+#     new_grids = Base.setindex(g.grids, local_boundary_grid, grid_id(id))
+#     return TensorGrid(new_grids...)
+# end
+
+
+
+
+
+
+
+
+# Do we add a convenience function `curvilinear_grid`? It could help with
+# creating the logical grid, evaluating functions and possibly calculating the
+# entries in the jacobian.
+
--- a/test/Grids/curvilinear_grid_test.jl	Fri Aug 25 08:57:27 2023 +0200
+++ b/test/Grids/curvilinear_grid_test.jl	Wed Jul 26 21:00:44 2023 +0200
@@ -1,6 +1,82 @@
 using Sbplib.Grids
 using Test
+using StaticArrays
 
 @testset "CurvilinearGrid" begin
-    @test CurvilinearGrid isa Any
+    g = equidistant_grid((10,10), (0,0), (1,1))
+    x̄ = map(ξ̄ -> 2ξ̄, g)
+    J = map(ξ̄ -> @SArray(fill(2., 2, 2)), g)
+
+    @test CurvilinearGrid(g, x̄, J) isa Grid{SVector{2, Float64},2}
+
+
+    @test_broken jacobian(cg) isa Array{<:AbstractVector}
+    @test_broken logicalgrid(cg) isa Grid
+
+
+
+    @testset "Indexing Interface" begin
+        # cg = CurvilinearGrid(g, x̄, J)
+        # @test cg[1,1] == [0.0, 0.0]
+        # @test cg[4,2] == [3/9,1/9]
+        # @test cg[6,10] == [5/9, 1]
+
+        # @test cg[begin, begin] == [0.0, 0.0]
+        # @test cg[end,end] == [1.0, 1.0]
+        # @test cg[begin,end] == [0., 1.]
+
+        # @test eachindex(cg) == 1:101
+    end
+
+    @testset "Iterator interface" begin
+        # @test eltype(EquidistantGrid(0:10)) == Int
+        # @test eltype(EquidistantGrid(0:2:10)) == Int
+        # @test eltype(EquidistantGrid(0:0.1:10)) == Float64
+
+        # @test size(EquidistantGrid(0:10)) == (11,)
+        # @test size(EquidistantGrid(0:0.1:10)) == (101,)
+
+        # @test collect(EquidistantGrid(0:0.1:0.5)) == [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
+
+        # @test Base.IteratorSize(EquidistantGrid{Float64, StepRange{Float64}}) == Base.HasShape{1}()
+    end
+
+    @testset "Base" begin
+        # @test ndims(EquidistantGrid(0:10)) == 1
+    end
+
+    @testset "boundary_identifiers" begin
+        # g = EquidistantGrid(0:0.1:10)
+        # @test boundary_identifiers(g) == (Lower(), Upper())
+        # @inferred boundary_identifiers(g)
+    end
+
+    @testset "boundary_grid" begin
+        # g = EquidistantGrid(0:0.1:1)
+        # @test boundary_grid(g, Lower()) == ZeroDimGrid(0.0)
+        # @test boundary_grid(g, Upper()) == ZeroDimGrid(1.0)
+    end
+
+    @testset "refine" begin
+        # g = EquidistantGrid(0:0.1:1)
+        # @test refine(g, 1) == g
+        # @test refine(g, 2) == EquidistantGrid(0:0.05:1)
+        # @test refine(g, 3) == EquidistantGrid(0:(0.1/3):1)
+    end
+
+    @testset "coarsen" begin
+        # g = EquidistantGrid(0:1:10)
+        # @test coarsen(g, 1) == g
+        # @test coarsen(g, 2) == EquidistantGrid(0:2:10)
+
+        # g = EquidistantGrid(0:0.1:1)
+        # @test coarsen(g, 1) == g
+        # @test coarsen(g, 2) == EquidistantGrid(0:0.2:1)
+
+        # g = EquidistantGrid(0:10)
+        # @test coarsen(g, 1) == EquidistantGrid(0:1:10)
+        # @test coarsen(g, 2) == EquidistantGrid(0:2:10)
+
+        # @test_throws DomainError(3, "Size minus 1 must be divisible by the ratio.") coarsen(g, 3)
+    end
 end