Mercurial > repos > public > sbplib_julia
changeset 75:93c833019857
Make EquidistantGrid more concrete
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Jan 2019 15:19:33 +0100 |
parents | c47aaedcf71e |
children | 81d9510cb2d0 |
files | EquidistantGrid.jl |
diffstat | 1 files changed, 21 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/EquidistantGrid.jl Thu Jan 17 13:53:01 2019 +0100 +++ b/EquidistantGrid.jl Thu Jan 17 15:19:33 2019 +0100 @@ -3,27 +3,24 @@ # by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto # the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) # the domain is defined as (-1,1)x(0,2). -struct EquidistantGrid <: AbstractGrid - numberOfPointsPerDim::Tuple # First coordinate direction stored first, then - # second, then third. - limits::NTuple{2,Tuple} # Stores the two points which defines the range of - # the e.g (-1,0) and (1,2) for a domain of size - # (-1,1)x(0,2) + +struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid + numberOfPointsPerDim::NTuple{Dim, Int} # First coordinate direction stored first, then + + limit_lower::NTuple{Dim, T} + limit_upper::NTuple{Dim, T} # General constructor - function EquidistantGrid(nPointsPerDim::Tuple, lims::NTuple{2,Tuple}) - @assert length(nPointsPerDim) > 0 - @assert count(x -> x > 0, nPointsPerDim) == length(nPointsPerDim) - @assert length(lims[1]) == length(nPointsPerDim) - @assert length(lims[2]) == length(nPointsPerDim) - # TODO: Assert that the same values are not passed in both lims[1] and lims[2] - # i.e the domain length is positive for all dimensions - return new(nPointsPerDim, lims) + function EquidistantGrid(nPointsPerDim::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T + @assert all(nPointsPerDim.>0) + @assert all(limit_upper.-limit_lower .!= 0) + return new{Dim,T}(nPointsPerDim, limit_lower, limit_upper) end - # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) - function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) - return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) - end + + # # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) + # function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) + # return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) + # end end @@ -40,11 +37,7 @@ # @Input: grid - an EquidistantGrid # @Return: numberOfPoints - The total number of points function numberOfPoints(grid::EquidistantGrid) - numberOfPoints = grid.numberOfPointsPerDim[1]; - for i = 2:length(grid.numberOfPointsPerDim); - numberOfPoints = numberOfPoints*grid.numberOfPointsPerDim[i] - end - return numberOfPoints + return prod(grid.numberOfPointsPerDim) end # Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance @@ -53,10 +46,7 @@ # @Input: grid - an EquidistantGrid # @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. function spacings(grid::EquidistantGrid) - a = grid.limits[1] - b = grid.limits[2] - - return abs.(b.-a)./(grid.numberOfPointsPerDim.-1) + return abs.(grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) end # Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered @@ -66,21 +56,17 @@ # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) - # Compute signed grid spacings - dx̄ = Vector{Real}(undef, numberOfDimensions(grid)) - for i ∈ eachindex(dx̄) - dx̄[i] = (grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) - end - dx̄ = Tuple(dx̄) + dx̄ = (grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) - points = Vector{NTuple{numberOfDimensions(grid),Real}}(undef, numberOfPoints(grid)) + points = Vector{typeof(dx̄)}(undef, numberOfPoints(grid)) # Compute the points based on their Cartesian indices and the signed # grid spacings cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) for i ∈ 1:numberOfPoints(grid) ci = Tuple(cartesianIndices[i]) .-1 - points[i] = grid.limits[1] .+ dx̄.*ci + points[i] = grid.limit_lower .+ dx̄.*ci end + # TBD: Keep? this? How do we want to represent points in 1D? if numberOfDimensions(grid) == 1 points = broadcast(x -> x[1], points)