Mercurial > repos > public > sbplib_julia
changeset 408:8fc429a22c8d test/equidistantgrid
Merging and closing branch before integration
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 13 Oct 2020 18:31:27 +0200 |
parents | b7734413003d (current diff) 48d57f185f86 (diff) |
children | b4e65cb18423 |
files | |
diffstat | 3 files changed, 73 insertions(+), 77 deletions(-) [+] |
line wrap: on
line diff
--- a/test/Manifest.toml Tue Oct 13 18:09:02 2020 +0200 +++ b/test/Manifest.toml Tue Oct 13 18:31:27 2020 +0200 @@ -16,6 +16,13 @@ deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" +[[Libdl]] +uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" + +[[LinearAlgebra]] +deps = ["Libdl"] +uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
--- a/test/Project.toml Tue Oct 13 18:09:02 2020 +0200 +++ b/test/Project.toml Tue Oct 13 18:31:27 2020 +0200 @@ -1,3 +1,4 @@ [deps] +LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" TestSetExtensions = "98d24dd4-01ad-11ea-1b02-c9a08f80db04"
--- a/test/testSbpOperators.jl Tue Oct 13 18:09:02 2020 +0200 +++ b/test/testSbpOperators.jl Tue Oct 13 18:31:27 2020 +0200 @@ -3,8 +3,7 @@ using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors - -# TODO: Remove collects for all the tests with TensorApplications +using LinearAlgebra @testset "SbpOperators" begin @@ -32,18 +31,16 @@ @testset "SecondDerivative" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 3.5 - g = EquidistantGrid((101,), (0.0,), (L,)) - h_inv = inverse_spacing(g) - h = 1/h_inv[1]; + g = EquidistantGrid(101, 0.0, L) Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) - f0(x::Float64) = 1. - f1(x::Float64) = x - f2(x::Float64) = 1/2*x^2 - f3(x::Float64) = 1/6*x^3 - f4(x::Float64) = 1/24*x^4 - f5(x::Float64) = sin(x) - f5ₓₓ(x::Float64) = -f5(x) + f0(x) = 1. + f1(x) = x + f2(x) = 1/2*x^2 + f3(x) = 1/6*x^3 + f4(x) = 1/24*x^4 + f5(x) = sin(x) + f5ₓₓ(x) = -f5(x) v0 = evalOn(g,f0) v1 = evalOn(g,f1) @@ -55,25 +52,22 @@ @test Dₓₓ isa TensorMapping{T,1,1} where T @test Dₓₓ' isa TensorMapping{T,1,1} where T - # TODO: Should perhaps set tolerance level for isapporx instead? - # Are these tolerance levels resonable or should tests be constructed - # differently? - equalitytol = 0.5*1e-10 - accuracytol = 0.5*1e-3 # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. - @test all(abs.(collect(Dₓₓ*v0)) .<= equalitytol) - @test all(abs.(collect(Dₓₓ*v1)) .<= equalitytol) - @test all(abs.((collect(Dₓₓ*v2) - v0)) .<= equalitytol) - @test all(abs.((collect(Dₓₓ*v3) - v1)) .<= equalitytol) - e4 = collect(Dₓₓ*v4) - v2 - e5 = collect(Dₓₓ*v5) + v5 - @test sqrt(h*sum(collect(e4.^2))) <= accuracytol - @test sqrt(h*sum(collect(e5.^2))) <= accuracytol + @test norm(Dₓₓ*v0) ≈ 0.0 atol=5e-10 + @test norm(Dₓₓ*v1) ≈ 0.0 atol=5e-10 + @test Dₓₓ*v2 ≈ v0 atol=5e-11 + @test Dₓₓ*v3 ≈ v1 atol=5e-11 + + h = spacing(g)[1]; + l2(v) = sqrt(h*sum(v.^2)) + @test Dₓₓ*v4 ≈ v2 atol=5e-4 norm=l2 + @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 end + @testset "Laplace2D" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 1.5 @@ -82,13 +76,13 @@ L = Laplace(g, op.innerStencil, op.closureStencils) - f0(x::Float64,y::Float64) = 2. - f1(x::Float64,y::Float64) = x+y - f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 - f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 - f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 - f5(x::Float64,y::Float64) = sin(x) + cos(y) - f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) + f0(x,y) = 2. + f1(x,y) = x+y + f2(x,y) = 1/2*x^2 + 1/2*y^2 + f3(x,y) = 1/6*x^3 + 1/6*y^3 + f4(x,y) = 1/24*x^4 + 1/24*y^4 + f5(x,y) = sin(x) + cos(y) + f5ₓₓ(x,y) = -f5(x,y) v0 = evalOn(g,f0) v1 = evalOn(g,f1) @@ -101,38 +95,32 @@ @test L isa TensorMapping{T,2,2} where T @test L' isa TensorMapping{T,2,2} where T - # TODO: Should perhaps set tolerance level for isapporx instead? - # Are these tolerance levels resonable or should tests be constructed - # differently? - equalitytol = 0.5*1e-10 - accuracytol = 0.5*1e-3 # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the H-norm. - @test all(abs.(collect(L*v0)) .<= equalitytol) - @test all(abs.(collect(L*v1)) .<= equalitytol) - @test all(collect(L*v2) .≈ v0) # Seems to be more accurate - @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) - e4 = collect(L*v4) - v2 - e5 = collect(L*v5) - v5ₓₓ + @test norm(L*v0) ≈ 0 atol=5e-10 + @test norm(L*v1) ≈ 0 atol=5e-10 + @test L*v2 ≈ v0 # Seems to be more accurate + @test L*v3 ≈ v1 atol=5e-10 h = spacing(g) - @test sqrt(prod(h)*sum(collect(e4.^2))) <= accuracytol - @test sqrt(prod(h)*sum(collect(e5.^2))) <= accuracytol + l2(v) = sqrt(prod(h)*sum(v.^2)) + @test L*v4 ≈ v2 atol=5e-4 norm=l2 + @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 end @testset "DiagonalInnerProduct" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 2.3 - g = EquidistantGrid((77,), (0.0,), (L,)) + g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g,op.quadratureClosure) v = ones(Float64, size(g)) @test H isa TensorMapping{T,1,1} where T @test H' isa TensorMapping{T,1,1} where T - @test sum(collect(H*v)) ≈ L - @test collect(H*v) == collect(H'*v) + @test sum(H*v) ≈ L + @test H*v == H'*v end @testset "Quadrature" begin @@ -158,15 +146,15 @@ @testset "InverseDiagonalInnerProduct" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 2.3 - g = EquidistantGrid((77,), (0.0,), (L,)) + g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g, op.quadratureClosure) Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) v = evalOn(g, x->sin(x)) @test Hi isa TensorMapping{T,1,1} where T @test Hi' isa TensorMapping{T,1,1} where T - @test collect(Hi*H*v) ≈ v - @test collect(Hi*v) == collect(Hi'*v) + @test Hi*H*v ≈ v + @test Hi*v == Hi'*v end @testset "InverseQuadrature" begin @@ -181,8 +169,8 @@ @test Qinv isa TensorMapping{T,2,2} where T @test Qinv' isa TensorMapping{T,2,2} where T - @test_broken collect(Qinv*(Q*v)) ≈ v - @test collect(Qinv*v) == collect(Qinv'*v) + @test_broken Qinv*(Q*v) ≈ v + @test Qinv*v == Qinv'*v end # # @testset "BoundaryValue" begin @@ -214,10 +202,10 @@ # @test size(e_s'*v) == (4,) # @test size(e_n'*v) == (4,) # -# @test collect(e_w'*v) == [10,7,4,1.0,1] -# @test collect(e_e'*v) == [13,10,7,4,4.0] -# @test collect(e_s'*v) == [10,11,12,13.0] -# @test collect(e_n'*v) == [1,2,3,4.0] +# @test e_w'*v == [10,7,4,1.0,1] +# @test e_e'*v == [13,10,7,4,4.0] +# @test e_s'*v == [10,11,12,13.0] +# @test e_n'*v == [1,2,3,4.0] # # g_x = [1,2,3,4.0] # g_y = [5,4,3,2,1.0] @@ -240,10 +228,10 @@ # @test size(e_n*g_x) == (4,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) -# @test_broken collect(e_w*g_y) == G_w -# @test_broken collect(e_e*g_y) == G_e -# @test_broken collect(e_s*g_x) == G_s -# @test_broken collect(e_n*g_x) == G_n +# @test_broken e_w*g_y == G_w +# @test_broken e_e*g_y == G_e +# @test_broken e_s*g_x == G_s +# @test_broken e_n*g_x == G_n # end # # @testset "NormalDerivative" begin @@ -273,10 +261,10 @@ # @test size(d_s'*v) == (5,) # @test size(d_n'*v) == (5,) # -# @test collect(d_w'*v) ≈ v∂x[1,:] -# @test collect(d_e'*v) ≈ v∂x[5,:] -# @test collect(d_s'*v) ≈ v∂y[:,1] -# @test collect(d_n'*v) ≈ v∂y[:,6] +# @test d_w'*v .≈ v∂x[1,:] +# @test d_e'*v .≈ v∂x[5,:] +# @test d_s'*v .≈ v∂y[:,1] +# @test d_n'*v .≈ v∂y[:,6] # # # d_x_l = zeros(Float64, 5) @@ -317,10 +305,10 @@ # @test size(d_n*g_x) == (5,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) -# @test_broken collect(d_w*g_y) ≈ G_w -# @test_broken collect(d_e*g_y) ≈ G_e -# @test_broken collect(d_s*g_x) ≈ G_s -# @test_broken collect(d_n*g_x) ≈ G_n +# @test_broken d_w*g_y .≈ G_w +# @test_broken d_e*g_y .≈ G_e +# @test_broken d_s*g_x .≈ G_s +# @test_broken d_n*g_x .≈ G_n # end # # @testset "BoundaryQuadrature" begin @@ -362,15 +350,15 @@ # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # -# @test collect(H_w*v_w) ≈ q_y.*v_w -# @test collect(H_e*v_e) ≈ q_y.*v_e -# @test collect(H_s*v_s) ≈ q_x.*v_s -# @test collect(H_n*v_n) ≈ q_x.*v_n +# @test H_w*v_w .≈ q_y.*v_w +# @test H_e*v_e .≈ q_y.*v_e +# @test H_s*v_s .≈ q_x.*v_s +# @test H_n*v_n .≈ q_x.*v_n # -# @test collect(H_w'*v_w) == collect(H_w'*v_w) -# @test collect(H_e'*v_e) == collect(H_e'*v_e) -# @test collect(H_s'*v_s) == collect(H_s'*v_s) -# @test collect(H_n'*v_n) == collect(H_n'*v_n) +# @test H_w'*v_w == H_w'*v_w +# @test H_e'*v_e == H_e'*v_e +# @test H_s'*v_s == H_s'*v_s +# @test H_n'*v_n == H_n'*v_n # end end