changeset 1397:86026367a9ff feature/grids/scalar_eval_on

Support evaluating scalars on grids
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 15 Aug 2023 22:55:25 +0200
parents 851d1e4ab3de
children dba1e8c95bbb
files src/Grids/grid.jl test/Grids/grid_test.jl
diffstat 2 files changed, 14 insertions(+), 1 deletions(-) [+]
line wrap: on
line diff
--- a/src/Grids/grid.jl	Thu Jun 08 15:52:22 2023 +0200
+++ b/src/Grids/grid.jl	Tue Aug 15 22:55:25 2023 +0200
@@ -74,7 +74,7 @@
 """
     eval_on(g::Grid, f)
 
-Lazy evaluation `f` on the grid. `f` can either be on the form `f(x,y,...)`
+Lazy evaluation of `f` on the grid. `f` can either be on the form `f(x,y,...)`
 with each coordinate as an argument, or on the form `f(x̄)` taking a
 coordinate vector.
 
@@ -88,6 +88,14 @@
         return LazyTensors.LazyFunctionArray((I...)->f(g[I...]...), size(g))
     end
 end
+"""
+    eval_on(g::Grid, f::Number)
+
+Lazy evaluation of a scalar `f` on the grid. `
+
+For concrete array grid functions `map(f,g)` can be used instead.
+"""
+eval_on(g::Grid, f::Number) = return LazyTensors.LazyConstantArray(f, size(g))
 
 _ncomponents(::Type{<:Number}) = 1
 _ncomponents(T::Type{<:SVector}) = length(T)
--- a/test/Grids/grid_test.jl	Thu Jun 08 15:52:22 2023 +0200
+++ b/test/Grids/grid_test.jl	Tue Aug 15 22:55:25 2023 +0200
@@ -38,6 +38,9 @@
     @test eval_on(ZeroDimGrid(1.), x̄->2x̄) isa LazyArray
     @test eval_on(ZeroDimGrid(1.), x̄->2x̄) == fill(2.)
 
+    @test eval_on(ZeroDimGrid(@SVector[1.,2.]), π) isa LazyArray
+    @test eval_on(ZeroDimGrid(@SVector[1.,2.]), π) == fill(π)
+
     @test eval_on(EquidistantGrid(range(0,1,length=4)), x->2x) isa LazyArray
     @test eval_on(EquidistantGrid(range(0,1,length=4)), x->2x) == 2 .* range(0,1,length=4)
 
@@ -49,6 +52,8 @@
 
     @test eval_on(g, x̄ -> sin(x̄[1])*cos(x̄[2])) == map(x̄->sin(x̄[1])*cos(x̄[2]), g)
 
+    @test eval_on(g, π) == fill(π, (5,3))
+
     # Vector valued function
     @test eval_on(g, x̄ -> @SVector[x̄[2], x̄[1]]) isa LazyArray{SVector{2,Float64}}
     @test eval_on(g, x̄ -> @SVector[x̄[2], x̄[1]]) == map(x̄ -> @SVector[x̄[2], x̄[1]], g)