Mercurial > repos > public > sbplib_julia
changeset 1563:6e910408c51a feature/sbp_operators/laplace_curvilinear
Merge manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 25 Apr 2024 10:20:43 +0200 |
parents | efa994405c38 (diff) 81e97d3bec8c (current diff) |
children | d7483e8af705 |
files | src/Grids/Grids.jl |
diffstat | 6 files changed, 308 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Grids/Grids.jl Wed Apr 24 13:26:30 2024 +0200 +++ b/src/Grids/Grids.jl Thu Apr 25 10:20:43 2024 +0200 @@ -1,3 +1,4 @@ +# TODO: Double check that the interfaces for indexing and iterating are fully implemented and tested for all grids. module Grids using Sbplib.RegionIndices @@ -47,6 +48,15 @@ export equidistant_grid +# MappedGrid +export MappedGrid +export jacobian +export logicalgrid +export mapped_grid +export jacobian_determinant +export geometric_tensor +export geometric_tensor_inverse + abstract type BoundaryIdentifier end include("manifolds.jl") @@ -54,5 +64,6 @@ include("tensor_grid.jl") include("equidistant_grid.jl") include("zero_dim_grid.jl") +include("mapped_grid.jl") end # module
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Grids/mapped_grid.jl Thu Apr 25 10:20:43 2024 +0200 @@ -0,0 +1,81 @@ +struct MappedGrid{T,D, GT<:Grid{<:Any,D}, CT<:AbstractArray{T,D}, JT<:AbstractArray{<:AbstractArray{<:Any, 2}, D}} <: Grid{T,D} + logicalgrid::GT + physicalcoordinates::CT + jacobian::JT +end + +jacobian(g::MappedGrid) = g.jacobian +logicalgrid(g::MappedGrid) = g.logicalgrid + + +# Indexing interface +Base.getindex(g::MappedGrid, I::Vararg{Int}) = g.physicalcoordinates[I...] +Base.eachindex(g::MappedGrid) = eachindex(g.logicalgrid) + +Base.firstindex(g::MappedGrid, d) = firstindex(g.logicalgrid, d) +Base.lastindex(g::MappedGrid, d) = lastindex(g.logicalgrid, d) + +# Iteration interface + +Base.iterate(g::MappedGrid) = iterate(g.physicalcoordinates) +Base.iterate(g::MappedGrid, state) = iterate(g.physicalcoordinates, state) + +Base.IteratorSize(::Type{<:MappedGrid{<:Any, D}}) where D = Base.HasShape{D}() +Base.length(g::MappedGrid) = length(g.logicalgrid) +Base.size(g::MappedGrid) = size(g.logicalgrid) +Base.size(g::MappedGrid, d) = size(g.logicalgrid, d) + +boundary_identifiers(g::MappedGrid) = boundary_identifiers(g.logicalgrid) +boundary_indices(g::MappedGrid, id::TensorGridBoundary) = boundary_indices(g.logicalgrid, id) + +function boundary_grid(g::MappedGrid, id::TensorGridBoundary) + b_indices = boundary_indices(g.logicalgrid, id) + + # Calculate indices of needed jacobian components + D = ndims(g) + all_indices = SVector{D}(1:D) + free_variable_indices = deleteat(all_indices, grid_id(id)) + jacobian_components = (:, free_variable_indices) + + # Create grid function for boundary grid jacobian + boundary_jacobian = componentview((@view g.jacobian[b_indices...]) , jacobian_components...) + boundary_physicalcoordinates = @view g.physicalcoordinates[b_indices...] + + return MappedGrid( + boundary_grid(g.logicalgrid, id), + boundary_physicalcoordinates, + boundary_jacobian, + ) +end + +# TBD: refine and coarsen could be implemented once we have a simple manifold implementation. +# Before we do, we should consider the overhead of including such a field in the mapped grid struct. + +function mapped_grid(x, J, size...) + D = length(size) + lg = equidistant_grid(size, ntuple(i->0., D), ntuple(i->1., D)) + return MappedGrid( + lg, + map(x,lg), + map(J,lg), + ) +end + +function jacobian_determinant(g::MappedGrid) + return map(jacobian(g)) do ∂x∂ξ + det(∂x∂ξ) + end +end + +function geometric_tensor(g::MappedGrid) + return map(jacobian(g)) do ∂x∂ξ + ∂x∂ξ'*∂x∂ξ + end +end + +function geometric_tensor_inverse(g::MappedGrid) + return map(jacobian(g)) do ∂x∂ξ + inv(∂x∂ξ'*∂x∂ξ) + end +end +
--- a/src/Grids/tensor_grid.jl Wed Apr 24 13:26:30 2024 +0200 +++ b/src/Grids/tensor_grid.jl Thu Apr 25 10:20:43 2024 +0200 @@ -1,3 +1,5 @@ +# TODO: Check this file and other grids for duplicate implementation of general methods implemented for Grid + """ TensorGrid{T,D} <: Grid{T,D}
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Wed Apr 24 13:26:30 2024 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Thu Apr 25 10:20:43 2024 +0200 @@ -52,3 +52,25 @@ return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) + + +function laplace(g::MappedGrid, stencil_set) + J = jacobian_determinant(g) + J⁻¹ = map(inv, J) + + Jḡ = map(*, J, ggeometric_tensor_inverse(g)) + lg = logicalgrid(g) + + return mapreduce(+, CartesianIndices(first(ḡ))) do I + i,j = I[1], I[2] + Jgⁱʲ = componentview(Jḡ, I[1], I[2]) + + if i == j + J⁻¹∘second_derivative_variable(lg, Jgⁱʲ, stencil_set, i) + else + Dᵢ = first_derivative(lg, stencil_set, i) + Dⱼ = first_derivative(lg, stencil_set, j) + J⁻¹∘Dᵢ∘DiagonalTensor(Jgⁱʲ)∘Dⱼ + end + end +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/Grids/mapped_grid_test.jl Thu Apr 25 10:20:43 2024 +0200 @@ -0,0 +1,186 @@ +using Sbplib.Grids +using Sbplib.RegionIndices +using Test +using StaticArrays + +@testset "MappedGrid" begin + lg = equidistant_grid((11,11), (0,0), (1,1)) # TODO: Change dims of the grid to be different + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + + # TODO: Test constructor for different dims of range and domain for the coordinates + # TODO: Test constructor with different type than TensorGrid. a dummy type? + + @test_broken false # @test_throws ArgumentError("Sizes must match") MappedGrid(lg, map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11)) + + + @test mg isa Grid{SVector{2, Float64},2} + + @test jacobian(mg) isa Array{<:AbstractMatrix} + @test logicalgrid(mg) isa Grid + + @testset "Indexing Interface" begin + mg = MappedGrid(lg, x̄, J) + @test mg[1,1] == [0.0, 0.0] + @test mg[4,2] == [0.6, 0.2] + @test mg[6,10] == [1., 1.8] + + @test mg[begin, begin] == [0.0, 0.0] + @test mg[end,end] == [2.0, 2.0] + @test mg[begin,end] == [0., 2.] + + @test eachindex(mg) == CartesianIndices((11,11)) + + @testset "cartesian indexing" begin + cases = [ + (1,1) , + (3,5) , + (10,6), + (1,1) , + (3,2) , + ] + + @testset "i = $is" for (lg, is) ∈ cases + @test mg[CartesianIndex(is...)] == mg[is...] + end + end + + @testset "eachindex" begin + @test eachindex(mg) == CartesianIndices((11,11)) + end + + @testset "firstindex" begin + @test firstindex(mg, 1) == 1 + @test firstindex(mg, 2) == 1 + end + + @testset "lastindex" begin + @test lastindex(mg, 1) == 11 + @test lastindex(mg, 2) == 11 + end + end + # TODO: Test with different types of logical grids + + @testset "Iterator interface" begin + sg = MappedGrid( + equidistant_grid((15,11), (0,0), (1,1)), + map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11) + ) + + @test eltype(mg) == SVector{2,Float64} + @test eltype(sg) == SVector{3,Float64} + + @test eltype(typeof(mg)) == SVector{2,Float64} + @test eltype(typeof(sg)) == SVector{3,Float64} + + @test size(mg) == (11,11) + @test size(sg) == (15,11) + + @test size(mg,2) == 11 + @test size(sg,2) == 11 + + @test length(mg) == 121 + @test length(sg) == 165 + + @test Base.IteratorSize(mg) == Base.HasShape{2}() + @test Base.IteratorSize(typeof(mg)) == Base.HasShape{2}() + + @test Base.IteratorSize(sg) == Base.HasShape{2}() + @test Base.IteratorSize(typeof(sg)) == Base.HasShape{2}() + + element, state = iterate(mg) + @test element == lg[1,1].*2 + element, _ = iterate(mg, state) + @test element == lg[2,1].*2 + + element, state = iterate(sg) + @test element == sg.physicalcoordinates[1,1] + element, _ = iterate(sg, state) + @test element == sg.physicalcoordinates[2,1] + + @test collect(mg) == 2 .* lg + end + + @testset "Base" begin + @test ndims(mg) == 2 + end + + @testset "boundary_identifiers" begin + @test boundary_identifiers(mg) == boundary_identifiers(lg) + end + + @testset "boundary_indices" begin + @test boundary_indices(mg, CartesianBoundary{1,Lower}()) == boundary_indices(lg,CartesianBoundary{1,Lower}()) + @test boundary_indices(mg, CartesianBoundary{2,Lower}()) == boundary_indices(lg,CartesianBoundary{2,Lower}()) + @test boundary_indices(mg, CartesianBoundary{1,Upper}()) == boundary_indices(lg,CartesianBoundary{1,Upper}()) + end + + @testset "boundary_grid" begin + x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] + J((ξ, η)) = @SMatrix[ + 1 0; + η*(2ξ-1) 1+ξ*(ξ-1); + ] + + mg = mapped_grid(x̄, J, 10, 11) + J1((ξ, η)) = @SMatrix[ + 1 ; + η*(2ξ-1); + ] + J2((ξ, η)) = @SMatrix[ + 0; + 1+ξ*(ξ-1); + ] + + function test_boundary_grid(mg, bId, Jb) + bg = boundary_grid(mg, bId) + + lg = logicalgrid(mg) + expected_bg = MappedGrid( + boundary_grid(lg, bId), + map(x̄, boundary_grid(lg, bId)), + map(Jb, boundary_grid(lg, bId)), + ) + + @testset let bId=bId, bg=bg, expected_bg=expected_bg + @test collect(bg) == collect(expected_bg) + @test logicalgrid(bg) == logicalgrid(expected_bg) + @test jacobian(bg) == jacobian(expected_bg) + # TODO: Implement equality of a curvilinear grid and simlify the above + end + end + + @testset test_boundary_grid(mg, TensorGridBoundary{1, Lower}(), J2) + @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) + @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) + @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) + end + + @testset "jacobian_determinant" begin + @test_broken false + end + + @testset "geometric_tensor" begin + @test_broken false + end + + @testset "geometric_tensor_inverse" begin + @test_broken false + end + +end + +@testset "mapped_grid" begin + x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] + J((ξ, η)) = @SMatrix[ + 1 0; + η*(2ξ-1) 1+ξ*(ξ-1); + ] + mg = mapped_grid(x̄, J, 10, 11) + @test mg isa MappedGrid{SVector{2,Float64}, 2} + + lg = equidistant_grid((10,11), (0,0), (1,1)) + @test logicalgrid(mg) == lg + @test collect(mg) == map(x̄, lg) +end
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl Wed Apr 24 13:26:30 2024 +0200 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Thu Apr 25 10:20:43 2024 +0200 @@ -72,12 +72,12 @@ g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) - @testset "1D" begin + @testset "EquidistantGrid" begin Δ = laplace(g_1D, stencil_set) @test Δ == second_derivative(g_1D, stencil_set) @test Δ isa LazyTensor{Float64,1,1} end - @testset "3D" begin + @testset "TensorGrid" begin Δ = laplace(g_3D, stencil_set) @test Δ isa LazyTensor{Float64,3,3} Dxx = second_derivative(g_3D, stencil_set, 1) @@ -86,5 +86,9 @@ @test Δ == Dxx + Dyy + Dzz @test Δ isa LazyTensor{Float64,3,3} end + + @testset "MappedGrid" begin + @test_broken false + end end