changeset 1355:102ebdaf7c11 feature/variable_derivatives

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 08 Feb 2023 21:21:28 +0100
parents fa0800591306 (diff) 7ee258e5289e (current diff)
children 49d03d1169ef
files src/Grids/EquidistantGrid.jl src/Grids/equidistant_grid.jl src/LazyTensors/lazy_tensor_operations.jl src/SbpOperators/SbpOperators.jl src/SbpOperators/boundaryops/boundary_operator.jl src/SbpOperators/stencil_set.jl src/SbpOperators/volumeops/derivatives/second_derivative_variable.jl src/SbpOperators/volumeops/volume_operator.jl test/Grids/EquidistantGrid_test.jl test/Grids/equidistant_grid_test.jl test/SbpOperators/boundaryops/boundary_operator_test.jl
diffstat 14 files changed, 619 insertions(+), 13 deletions(-) [+]
line wrap: on
line diff
--- a/src/Grids/equidistant_grid.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/Grids/equidistant_grid.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -62,11 +62,15 @@
 
 Base.size(g::EquidistantGrid) = g.size
 
-Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim
-
+function Base.getindex(g::EquidistantGrid, I::Vararg{Int})
+    h = spacing(g)
+    return g.limit_lower .+ (I.-1).*h
+end
 
+Base.getindex(g::EquidistantGrid, I::CartesianIndex) = g[Tuple(I)...]
+# TBD: Can this method be removed if `EquidistantGrid` is an AbstractArray?
 
-
+Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim
 
 """
     spacing(grid::EquidistantGrid)
--- a/src/LazyTensors/lazy_tensor_operations.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/LazyTensors/lazy_tensor_operations.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -1,3 +1,5 @@
+using Sbplib.RegionIndices
+
 """
     TensorApplication{T,R,D} <: LazyArray{T,R}
 
@@ -314,7 +316,6 @@
     print(io, "domain size $(domain_size(err.tm)) of LazyTensor not matching size $(err.sz)")
 end
 
-
 struct RangeSizeMismatch <: Exception
     tm::LazyTensor
     sz
@@ -324,3 +325,29 @@
     print(io, "RangeSizeMismatch: ")
     print(io, "range size $(range_size(err.tm)) of LazyTensor not matching size $(err.sz)")
 end
+
+# TODO: These should probably be removed. From new testing in performance/get_region_type_inference it seems that the problems are solved without these
+function apply_with_region(op, v, boundary_width::Integer, dim_size::Integer, i)
+    if 0 < i <= boundary_width
+        return LazyTensors.apply(op,v,Index(i,Lower))
+    elseif boundary_width < i <= dim_size-boundary_width
+        return LazyTensors.apply(op,v,Index(i,Interior))
+    elseif dim_size-boundary_width < i <= dim_size
+        return LazyTensors.apply(op,v,Index(i,Upper))
+    else
+        error("Bounds error") # TODO: Make this more standard
+    end
+end
+# TBD: Can these methods be merge by having a function as an arguement instead?
+# TODO: Add inference test that show where things break and how this rewrite fixes it.
+function apply_transpose_with_region(op, v, boundary_width::Integer, dim_size::Integer, i)
+    if 0 < i <= boundary_width
+        return LazyTensors.apply_transpose(op,v,Index(i,Lower))
+    elseif boundary_width < i <= dim_size-boundary_width
+        return LazyTensors.apply_transpose(op,v,Index(i,Interior))
+    elseif dim_size-boundary_width < i <= dim_size
+        return LazyTensors.apply_transpose(op,v,Index(i,Upper))
+    else
+        error("Bounds error") # TODO: Make this more standard
+    end
+end
--- a/src/RegionIndices/RegionIndices.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/RegionIndices/RegionIndices.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -65,6 +65,7 @@
         error("Bounds error") # TODO: Make this more standard
     end
 end
+# 2022-02-21: Using the return values of getregion cause type inference to give up in certain cases, for example H*H*v
 
 export getregion
 
--- a/src/SbpOperators/SbpOperators.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/SbpOperators/SbpOperators.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -5,6 +5,7 @@
 export read_stencil_set
 export get_stencil_set
 export parse_stencil
+export parse_nested_stencil
 export parse_scalar
 export parse_tuple
 export sbp_operators_path
@@ -30,6 +31,8 @@
     even = 1
 end
 
+export closure_size
+
 include("stencil.jl")
 include("stencil_set.jl")
 include("volumeops/volume_operator.jl")
@@ -37,6 +40,7 @@
 include("volumeops/constant_interior_scaling_operator.jl")
 include("volumeops/derivatives/first_derivative.jl")
 include("volumeops/derivatives/second_derivative.jl")
+include("volumeops/derivatives/second_derivative_variable.jl")
 include("volumeops/derivatives/dissipation.jl")
 include("volumeops/laplace/laplace.jl")
 include("volumeops/inner_products/inner_product.jl")
--- a/src/SbpOperators/boundaryops/boundary_operator.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/SbpOperators/boundaryops/boundary_operator.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -54,6 +54,5 @@
 end
 
 function LazyTensors.apply_transpose(op::BoundaryOperator, v::AbstractArray{<:Any,0}, i)
-    r = getregion(i, closure_size(op), op.size)
-    apply_transpose(op, v, Index(i,r))
+    return LazyTensors.apply_transpose_with_region(op, v, closure_size(op), op.size[1], i)
 end
--- a/src/SbpOperators/operators/standard_diagonal.toml	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/SbpOperators/operators/standard_diagonal.toml	Wed Feb 08 21:21:28 2023 +0100
@@ -20,6 +20,10 @@
 H.inner = "1"
 H.closure = ["1/2"]
 
+e.closure = ["1"]
+d1.closure = {s = ["3/2", "-2", "1/2"], c = 1}
+
+
 D1.inner_stencil = ["-1/2", "0", "1/2"]
 D1.closure_stencils = [
     {s = ["-1", "1"], c = 1},
@@ -30,8 +34,10 @@
     {s = ["1", "-2", "1"], c = 1},
 ]
 
-e.closure = ["1"]
-d1.closure = {s = ["3/2", "-2", "1/2"], c = 1}
+D2variable.inner_stencil = [["1/2", "1/2", "0"],[ "-1/2", "-1", "-1/2"],["0", "1/2", "1/2"]]
+D2variable.closure_stencils = [
+        {s = [["2", "-1", "0"],["-3", "1",   "0"],["1","0","0"]], c = 1},
+]
 
 [[stencil_set]]
 
@@ -40,6 +46,9 @@
 H.inner = "1"
 H.closure = ["17/48", "59/48", "43/48", "49/48"]
 
+e.closure = ["1"]
+d1.closure = {s = ["11/6", "-3", "3/2", "-1/3"], c = 1}
+
 D1.inner_stencil = ["1/12","-2/3","0","2/3","-1/12"]
 D1.closure_stencils = [
     {s = [ "-24/17",  "59/34",  "-4/17", "-3/34",     "0",     "0"], c = 1},
@@ -56,5 +65,79 @@
     {s = [ "-1/49",     "0",   "59/49", "-118/49", "64/49", "-4/49"], c = 4},
 ]
 
+D2variable.inner_stencil = [
+    ["-1/8",   "1/6", "-1/8",   "0",    "0"  ],
+    [ "1/6",   "1/2",  "1/2",  "1/6",   "0"  ],
+    ["-1/24", "-5/6", "-3/4", "-5/6", "-1/24"],
+    [  "0",    "1/6",  "1/2",  "1/2",  "1/6" ],
+    [  "0",     "0",  "-1/8",  "1/6", "-1/8" ],
+]
+D2variable.closure_stencils = [
+    {c = 1, s = [
+        [  "920/289",  "-59/68",              "-81031200387/366633756146",                  "-69462376031/733267512292",              "0",             "0",      "0",     "0"  ],
+        ["-1740/289",     "0",                  "6025413881/7482321554",                      "1612249989/7482321554",                "0",             "0",      "0",     "0"  ],
+        [ "1128/289",   "59/68",               "-6251815797/8526366422",                      "-639954015/17052732844",               "0",             "0",      "0",     "0"  ],
+        [ "-308/289",     "0",                  "1244724001/7482321554",                      "-752806667/7482321554",                "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",                  "-148737261/10783345769",                      "148737261/10783345769",               "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",                          "-3/833",                                      "3/833",                       "0",             "0",      "0",     "0"  ],
+    ]},
+    {c = 2, s = [
+        [   "12/17",      "0",                   "102125659/440136562",                         "27326271/440136562",                 "0",             "0",      "0",     "0"  ],
+        [  "-59/68",      "0",            "-156920047993625/159775733917868",            "-12001237118451/79887866958934",            "0",             "0",      "0",     "0"  ],
+        [    "2/17",      "0",               "1489556735319/1857857371138",                 "149729180391/1857857371138",             "0",             "0",      "0",     "0"  ],
+        [    "3/68",      "0",             "-13235456910147/159775733917868",              "3093263736297/79887866958934",            "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",                 "67535018271/2349643145851",                 "-67535018271/2349643145851",             "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",                         "441/181507",                                "-441/181507",                    "0",             "0",      "0",     "0"  ],
+    ]},
+    {c = 3, s = [
+        [  "-96/731",   "59/172",              "-6251815797/21566691538",                     "-639954015/43133383076",               "0",             "0",      "0",     "0"  ],
+        [  "118/731",     "0",              "87883847383821/79887866958934",               "8834021643069/79887866958934",            "0",             "0",      "0",     "0"  ],
+        [  "-16/731",  "-59/172",  "-1134866646907639536627/727679167377258785038",   "-13777050223300597/23487032885926596",   "-26254/557679",       "0",      "0",     "0"  ],
+        [   "-6/731",     "0",        "14509020271326561681/14850595252597118062",        "17220493277981/79887866958934",     "1500708/7993399",      "0",      "0",     "0"  ],
+        [     "0",        "0",        "-4841930283098652915/21402328452272317207",        "31597236232005/115132514146699",     "-26254/185893",       "0",      "0",     "0"  ],
+        [     "0",        "0",                 "-2318724711/1653303156799",                       "960119/1147305747",           "13564/23980197",     "0",      "0",     "0"  ],
+    ]},
+    {c = 4, s = [
+        [  "-36/833",     "0",                  "1244724001/21566691538",                    "-752806667/21566691538",                "0",             "0",      "0",     "0"  ],
+        [  "177/3332",    "0",            "-780891957698673/7829010961975532",            "3724542049827/79887866958934",             "0",             "0",      "0",     "0"  ],
+        [   "-6/833",     "0",        "14509020271326561681/16922771334354855466",        "2460070468283/13005001597966",      "1500708/9108757",      "0",      "0",     "0"  ],
+        [   "-9/3332",    "0",      "-217407431400324796377/207908333536359652868",   "-1950062198436997/3914505480987766",   "-7476412/9108757",    "-2/49",    "0",     "0"  ],
+        [     "0",        "0",         "4959271814984644613/21402328452272317207",       "47996144728947/115132514146699",     "4502124/9108757",     "8/49",    "0",     "0"  ],
+        [     "0",        "0",                 "-2258420001/1653303156799",                    "-1063649/8893843",             "1473580/9108757",    "-6/49",    "0",     "0"  ],
+    ]},
+    {c = 5, s = [
+        [     "0",        "0",                   "-49579087/10149031312",                       "49579087/10149031312",               "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",               "1328188692663/37594290333616",              "-1328188692663/37594290333616",            "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",        "-1613976761032884305/7963657098519931984",         "10532412077335/42840005263888",     "-564461/4461432",      "0",      "0",     "0"  ],
+        [     "0",        "0",         "4959271814984644613/20965546238960637264",        "15998714909649/37594290333616",      "375177/743572",      "1/6",     "0",     "0"  ],
+        [     "0",        "0",        "-8386761355510099813/128413970713633903242",    "-2224717261773437/2763180339520776",   "-280535/371786",     "-5/6",   "-1/24",   "0"  ],
+        [     "0",        "0",                 "13091810925/13226425254392",                    "35039615/213452232",          "1118749/2230716",     "1/2",    "1/6",    "0"  ],
+        [     "0",        "0",                            "0",                                          "0",                        "-1/8",           "1/6",   "-1/8",    "0"  ],
+    ]},
+    {c = 6, s = [
+        [     "0",        "0",                          "-1/784",                                      "1/784",                       "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",                        "8673/2904112",                              "-8673/2904112",                   "0",             "0",      "0",     "0"  ],
+        [     "0",        "0",                "-33235054191/26452850508784",                      "960119/1280713392",            "3391/6692148",      "0",      "0",     "0"  ],
+        [     "0",        "0",                  "-752806667/539854092016",                      "-1063649/8712336",             "368395/2230716",    "-1/8",     "0",     "0"  ],
+        [     "0",        "0",                 "13091810925/13226425254392",                    "35039615/213452232",          "1118749/2230716",     "1/2",    "1/6",    "0"  ],
+        [     "0",        "0",                  "-660204843/13226425254392",                    "-3290636/80044587",          "-5580181/6692148",    "-3/4",   "-5/6",  "-1/24"],
+        [     "0",        "0",                            "0",                                          "0",                         "1/6",           "1/2",    "1/2",   "1/6" ],
+        [     "0",        "0",                            "0",                                          "0",                          "0",           "-1/8",    "1/6",  "-1/8" ],
+    ]}
+]
+
+
+
+[[stencil_set]]
+
+order = 6
+
+H.inner = "1"
+H.closure = ["13649/43200", "12013/8640", "2711/4320", "5359/4320", "7877/8640", "43801/43200"]
+
+
+
+
+
 e.closure = ["1"]
-d1.closure = {s = ["11/6", "-3", "3/2", "-1/3"], c = 1}
+d1.closure = ["-25/12", "4", "-3", "4/3", "-1/4"]
--- a/src/SbpOperators/stencil_set.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/SbpOperators/stencil_set.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -110,6 +110,33 @@
     end
 end
 
+
+"""
+    parse_nested_stencil(parsed_toml)
+
+Accept parsed TOML and read it as a nested tuple.
+
+See also [`read_stencil_set`](@ref), [`parse_stencil`](@ref).
+"""
+function parse_nested_stencil(parsed_toml)
+    if parsed_toml isa Array
+        weights = parse_stencil.(parsed_toml)
+        return CenteredNestedStencil(weights...)
+    end
+
+    center = parsed_toml["c"]
+    weights = parse_tuple.(parsed_toml["s"])
+    return NestedStencil(weights...; center)
+end
+
+"""
+    parse_nested_stencil(T, parsed_toml)
+
+Parse the input as a nested stencil with element type `T`.
+"""
+parse_nested_stencil(T, parsed_toml) = NestedStencil{T}(parse_nested_stencil(parsed_toml))
+
+
 """
     parse_scalar(parsed_toml)
 
--- a/src/SbpOperators/volumeops/constant_interior_scaling_operator.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/SbpOperators/volumeops/constant_interior_scaling_operator.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -41,8 +41,7 @@
 end
 
 function LazyTensors.apply(op::ConstantInteriorScalingOperator, v::AbstractVector, i)
-    r = getregion(i, closure_size(op), op.size[1])
-    return LazyTensors.apply(op, v, Index(i, r))
+    return LazyTensors.apply_with_region(op, v, closure_size(op), op.size[1], i)
 end
 
 LazyTensors.apply_transpose(op::ConstantInteriorScalingOperator, v, i) = apply(op, v, i)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/derivatives/second_derivative_variable.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -0,0 +1,195 @@
+export SecondDerivativeVariable
+
+# REVIEW: Fixa docs
+"""
+    SecondDerivativeVariable{Dir,T,D,...} <: LazyTensor{T,D,D}
+
+A second derivative operator in direction `Dir` with a variable coefficient.
+"""
+struct SecondDerivativeVariable{Dir,T,D,M,IStencil<:NestedStencil{T},CStencil<:NestedStencil{T},TArray<:AbstractArray} <: LazyTensor{T,D,D}
+    inner_stencil::IStencil
+    closure_stencils::NTuple{M,CStencil}
+    size::NTuple{D,Int}
+    coefficient::TArray
+
+    function SecondDerivativeVariable{Dir, D}(inner_stencil::NestedStencil{T}, closure_stencils::NTuple{M,NestedStencil{T}}, size::NTuple{D,Int}, coefficient::AbstractArray) where {Dir,T,D,M}
+        IStencil = typeof(inner_stencil)
+        CStencil = eltype(closure_stencils)
+        TArray = typeof(coefficient)
+        return new{Dir,T,D,M,IStencil,CStencil,TArray}(inner_stencil,closure_stencils,size, coefficient)
+    end
+end
+
+function SecondDerivativeVariable(grid::EquidistantGrid, coeff::AbstractArray, inner_stencil, closure_stencils, dir)
+    check_coefficient(grid, coeff)
+
+    Δxᵢ = spacing(grid)[dir]
+    scaled_inner_stencil = scale(inner_stencil, 1/Δxᵢ^2)
+    scaled_closure_stencils = scale.(Tuple(closure_stencils), 1/Δxᵢ^2)
+    return SecondDerivativeVariable{dir, ndims(grid)}(scaled_inner_stencil, scaled_closure_stencils, size(grid), coeff)
+end
+
+function SecondDerivativeVariable(grid::EquidistantGrid{1}, coeff::AbstractVector, inner_stencil::NestedStencil, closure_stencils)
+    return SecondDerivativeVariable(grid, coeff, inner_stencil, closure_stencils, 1)
+end
+
+@doc raw"""
+    SecondDerivativeVariable(grid::EquidistantGrid, coeff::AbstractArray, stencil_set, dir)
+
+Create a `LazyTensor` for the second derivative with a variable coefficient
+`coeff` on `grid` from the stencils in `stencil_set`. The direction is
+determined by `dir`.
+
+`coeff` is a grid function on `grid`.
+
+# Example
+With
+```
+D = SecondDerivativeVariable(g, c, stencil_set, 2)
+```
+then `D*u` approximates
+```math
+\frac{\partial}{\partial y} c(x,y) \frac{\partial u}{\partial y},
+```
+on ``(0,1)⨯(0,1)`` represented by `g`.
+"""
+function SecondDerivativeVariable(grid::EquidistantGrid, coeff::AbstractArray, stencil_set, dir::Int)
+    inner_stencil    = parse_nested_stencil(eltype(coeff), stencil_set["D2variable"]["inner_stencil"])
+    closure_stencils = parse_nested_stencil.(eltype(coeff), stencil_set["D2variable"]["closure_stencils"])
+
+    return SecondDerivativeVariable(grid, coeff, inner_stencil, closure_stencils, dir)
+end
+
+function check_coefficient(grid, coeff)
+    if ndims(grid) != ndims(coeff)
+        throw(ArgumentError("The coefficient has dimension $(ndims(coeff)) while the grid is dimension $(ndims(grid))"))
+    end
+
+    if size(grid) != size(coeff)
+        throw(DimensionMismatch("the size $(size(coeff)) of the coefficient does not match the size $(size(grid)) of the grid"))
+    end
+end
+
+derivative_direction(::SecondDerivativeVariable{Dir}) where {Dir} = Dir
+
+closure_size(op::SecondDerivativeVariable) = length(op.closure_stencils)
+
+LazyTensors.range_size(op::SecondDerivativeVariable) = op.size
+LazyTensors.domain_size(op::SecondDerivativeVariable) = op.size
+
+
+function derivative_view(op, a, I)
+    d = derivative_direction(op)
+
+    Iview = Base.setindex(I,:,d)
+    return @view a[Iview...]
+end
+
+function apply_lower(op::SecondDerivativeVariable, v, I...)
+    ṽ = derivative_view(op, v, I)
+    c̃ = derivative_view(op, op.coefficient, I)
+
+    i = I[derivative_direction(op)]
+    return @inbounds apply_stencil(op.closure_stencils[i], c̃, ṽ, i)
+end
+
+function apply_interior(op::SecondDerivativeVariable, v, I...)
+    ṽ = derivative_view(op, v, I)
+    c̃ = derivative_view(op, op.coefficient, I)
+
+    i = I[derivative_direction(op)]
+    return apply_stencil(op.inner_stencil, c̃, ṽ, i)
+end
+
+function apply_upper(op::SecondDerivativeVariable, v, I...)
+    ṽ = derivative_view(op, v, I)
+    c̃ = derivative_view(op, op.coefficient, I)
+
+    i = I[derivative_direction(op)]
+    stencil = op.closure_stencils[op.size[derivative_direction(op)]-i+1]
+    return @inbounds apply_stencil_backwards(stencil, c̃, ṽ, i)
+end
+
+function LazyTensors.apply(op::SecondDerivativeVariable, v::AbstractArray, I::Vararg{Index})
+    if I[derivative_direction(op)] isa Index{Lower}
+        return apply_lower(op, v, Int.(I)...)
+    elseif I[derivative_direction(op)] isa Index{Upper}
+        return apply_upper(op, v, Int.(I)...)
+    elseif I[derivative_direction(op)] isa Index{Interior}
+        return apply_interior(op, v, Int.(I)...)
+    else
+        error("Invalid region")
+    end
+end
+
+function LazyTensors.apply(op::SecondDerivativeVariable, v::AbstractArray, I...)
+    dir = derivative_direction(op)
+
+    i = I[dir]
+
+    I = map(i->Index(i, Interior), I)
+    if 0 < i <= closure_size(op)
+        I = Base.setindex(I, Index(i, Lower), dir)
+        return LazyTensors.apply(op, v, I...)
+    elseif closure_size(op) < i <= op.size[dir]-closure_size(op)
+        I = Base.setindex(I, Index(i, Interior), dir)
+        return LazyTensors.apply(op, v, I...)
+    elseif op.size[dir]-closure_size(op) < i <= op.size[dir]
+        I = Base.setindex(I, Index(i, Upper), dir)
+        return LazyTensors.apply(op, v, I...)
+    else
+        error("Bounds error") # TODO: Make this more standard
+    end
+end
+
+
+## 2D Specific implementations to avoid instability
+## TODO: Should really be solved by fixing the general methods instead
+
+
+## x-direction
+function apply_lower(op::SecondDerivativeVariable{1}, v, i, j)
+    ṽ = @view v[:,j]
+    c̃ = @view op.coefficient[:,j]
+
+    return @inbounds apply_stencil(op.closure_stencils[i], c̃, ṽ, i)
+end
+
+function apply_interior(op::SecondDerivativeVariable{1}, v, i, j)
+    ṽ = @view v[:,j]
+    c̃ = @view op.coefficient[:,j]
+
+    return @inbounds apply_stencil(op.inner_stencil, c̃, ṽ, i)
+end
+
+function apply_upper(op::SecondDerivativeVariable{1}, v, i, j)
+    ṽ = @view v[:,j]
+    c̃ = @view op.coefficient[:,j]
+
+    stencil = op.closure_stencils[op.size[derivative_direction(op)]-i+1]
+    return @inbounds apply_stencil_backwards(stencil, c̃, ṽ, i)
+end
+
+
+## y-direction
+function apply_lower(op::SecondDerivativeVariable{2}, v, i, j)
+    ṽ = @view v[i,:]
+    c̃ = @view op.coefficient[i,:]
+
+    return @inbounds apply_stencil(op.closure_stencils[j], c̃, ṽ, j)
+end
+
+function apply_interior(op::SecondDerivativeVariable{2}, v, i, j)
+    ṽ = @view v[i,:]
+    c̃ = @view op.coefficient[i,:]
+
+    return @inbounds apply_stencil(op.inner_stencil, c̃, ṽ, j)
+end
+
+function apply_upper(op::SecondDerivativeVariable{2}, v, i, j)
+    ṽ = @view v[i,:]
+    c̃ = @view op.coefficient[i,:]
+
+    stencil = op.closure_stencils[op.size[derivative_direction(op)]-j+1]
+    return @inbounds apply_stencil_backwards(stencil, c̃, ṽ, j)
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/inference_trouble.txt	Wed Feb 08 21:21:28 2023 +0100
@@ -0,0 +1,53 @@
+Innan ändringarna på den här branchen:
+
+begin
+    using Sbplib
+    using Sbplib.Grids
+    using Sbplib.SbpOperators
+
+    g = EquidistantGrid((10,10),(0.,0.), (1.,1.))
+    v = evalOn(g, (x,y)->x^2+y^2+1)
+    H = inner_product(g, 1., [1/2])
+end
+
+# Not type stable
+LazyTensors.apply(H.t1, H.t2*v, 1,2) 
+@code_warntype LazyTensors.apply(H.t1, H.t2*v, 1,2)
+@code_warntype LazyTensors.apply(H.t1.tm, view(H.t2*v,:,1), 2)
+
+# Nedan är halvdåliga
+@code_warntype LazyTensors.apply(H.t1.tm, view(H.t2*v,1,:), 2)
+@code_warntype LazyTensors.apply(H.t1.tm, view(v,1,:), 2)
+@code_warntype LazyTensors.apply(H.t1.tm, view(v,:,1), 2)
+@code_warntype LazyTensors.apply(H.t1.tm, v[:,1], 2)
+
+
+
+
+
+
+
+
+
+begin
+    using Sbplib
+    using Sbplib.Grids
+    using Sbplib.SbpOperators
+    import Sbplib.SbpOperators: Stencil
+    using Sbplib.RegionIndices
+
+    g = EquidistantGrid(10,0., 1.)
+    v = evalOn(g, (x)->x^2+1)
+    H = inner_product(g, 1., [1/2])
+    V = SbpOperators.volume_operator(g, Stencil(1.,center=1), (Stencil(1/2,center=1),), SbpOperators.even,1)
+    b = SbpOperators.boundary_operator(g, Stencil(1/2,center=1), CartesianBoundary{1,Lower}())
+end
+
+@code_warntype LazyTensors.apply(H, H*v, 2)
+@code_warntype LazyTensors.apply(V, V*v, 2)
+@code_warntype LazyTensors.apply(b, b*v, 2)
+
+
+
+begin
+end
--- a/src/SbpOperators/volumeops/volume_operator.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/src/SbpOperators/volumeops/volume_operator.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -32,7 +32,6 @@
 end
 
 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i)
-    r = getregion(i, closure_size(op), op.size[1])
-    return LazyTensors.apply(op, v, Index(i, r))
+    return LazyTensors.apply_with_region(op, v, closure_size(op), op.size[1], i)
 end
 # TODO: Move this to LazyTensors when we have the region communication down.
--- a/test/Grids/equidistant_grid_test.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/test/Grids/equidistant_grid_test.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -21,6 +21,18 @@
         @test ndims(EquidistantGrid((5,3), (0.0,0.0), (2.0,1.0))) == 2
     end
 
+    @testset "getindex" begin
+        g = EquidistantGrid((5,3), (-1.0,0.0), (0.0,7.11))
+        @test g[1,1] == (-1.0,0.0)
+        @test g[1,3] == (-1.0,7.11)
+        @test g[5,1] == (0.0,0.0)
+        @test g[5,3] == (0.0,7.11)
+
+        @test g[4,2] == (-0.25,7.11/2)
+
+        @test g[CartesianIndex(1,3)] == (-1.0,7.11)
+    end
+
     @testset "spacing" begin
         @test [spacing(EquidistantGrid(4,0.0,1.0))...] ≈ [(1. /3,)...] atol=5e-13
         @test [spacing(EquidistantGrid((5,3), (0.0,-1.0), (2.0,1.0)))...] ≈ [(0.5, 1.)...] atol=5e-13
--- a/test/SbpOperators/stencil_set_test.jl	Wed Feb 08 10:29:06 2023 +0100
+++ b/test/SbpOperators/stencil_set_test.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -4,6 +4,7 @@
 using Sbplib.SbpOperators
 
 import Sbplib.SbpOperators.Stencil
+import Sbplib.SbpOperators.NestedStencil
 
 @testset "readoperator" begin
     toml_str = """
@@ -170,3 +171,18 @@
     @test SbpOperators.parse_rational(2) isa Rational
     @test SbpOperators.parse_rational(2) == 2//1
 end
+
+@testset "parse_nested_stencil" begin
+    toml = TOML.parse("""
+        s1 = [["1/2", "1/2", "0"],[ "-1/2", "-1", "-1/2"],["0", "1/2", "1/2"]]
+        s2 = {s = [[  "2",  "-1", "0"],[   "-3",  "1",    "0"],["1",   "0",   "0"]], c = 1}
+        s3 = {s = [[  "2",  "-1", "0"],[   "-3",  "1",    "0"],["1",   "0",   "0"]], c = 2}
+    """)
+
+    @test parse_nested_stencil(toml["s1"]) == CenteredNestedStencil((1//2, 1//2, 0//1),( -1//2, -1//1, -1//2),(0//1, 1//2, 1//2))
+    @test parse_nested_stencil(toml["s2"]) == NestedStencil((2//1, -1//1, 0//1),( -3//1, 1//1, 0//1),(1//1, 0//1, 0//1), center = 1)
+    @test parse_nested_stencil(toml["s3"]) == NestedStencil((2//1, -1//1, 0//1),( -3//1, 1//1, 0//1),(1//1, 0//1, 0//1), center = 2)
+
+    @test parse_nested_stencil(Float64, toml["s1"]) == CenteredNestedStencil((1/2, 1/2, 0.),( -1/2, -1., -1/2),(0., 1/2, 1/2))
+    @test parse_nested_stencil(Int, toml["s2"]) == NestedStencil((2, -1, 0),( -3, 1, 0),(1, 0, 0), center = 1)
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/SbpOperators/volumeops/derivatives/second_derivative_variable_test.jl	Wed Feb 08 21:21:28 2023 +0100
@@ -0,0 +1,187 @@
+using Test
+
+using Sbplib.Grids
+using Sbplib.LazyTensors
+using Sbplib.SbpOperators
+using Sbplib.RegionIndices
+using Sbplib.SbpOperators: NestedStencil, CenteredNestedStencil
+
+using LinearAlgebra
+
+@testset "SecondDerivativeVariable" begin
+    interior_stencil = CenteredNestedStencil((1/2, 1/2, 0.),(-1/2, -1., -1/2),( 0., 1/2, 1/2))
+    closure_stencils = [
+        NestedStencil(( 2.,  -1., 0.),(-3., 1.,  0.), (1., 0., 0.), center = 1),
+    ]
+
+    @testset "1D" begin
+        g = EquidistantGrid(11, 0., 1.)
+        c = [  1.,  3.,  6., 10., 15., 21., 28., 36., 45., 55., 66.]
+        @testset "Constructors" begin
+            @test SecondDerivativeVariable(g, c, interior_stencil, closure_stencils) isa LazyTensor
+
+            D₂ᶜ = SecondDerivativeVariable(g, c, interior_stencil, closure_stencils)
+            @test range_dim(D₂ᶜ) == 1
+            @test domain_dim(D₂ᶜ) == 1
+
+
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 2)
+            @test SecondDerivativeVariable(g, c, stencil_set, 1) isa SecondDerivativeVariable
+
+            @testset "checking c" begin
+                c_short = rand(5)
+                c_long = rand(16)
+                c_higher_dimension = rand(11,11)
+
+                @test_throws DimensionMismatch("the size (5,) of the coefficient does not match the size (11,) of the grid") SecondDerivativeVariable(g, c_short, interior_stencil, closure_stencils)
+                @test_throws DimensionMismatch("the size (16,) of the coefficient does not match the size (11,) of the grid") SecondDerivativeVariable(g, c_long, interior_stencil, closure_stencils)
+                @test_throws ArgumentError("The coefficient has dimension 2 while the grid is dimension 1") SecondDerivativeVariable(g, c_higher_dimension, interior_stencil, closure_stencils,1)
+            end
+        end
+
+        @testset "sizes" begin
+            D₂ᶜ = SecondDerivativeVariable(g, c, interior_stencil, closure_stencils)
+            @test closure_size(D₂ᶜ) == 1
+            @test range_size(D₂ᶜ) == (11,)
+            @test domain_size(D₂ᶜ) == (11,)
+        end
+
+        @testset "application" begin
+
+            function apply_to_functions(; v, c)
+                g = EquidistantGrid(11, 0., 10.) # h = 1
+                c̄ = evalOn(g,c)
+                v̄ = evalOn(g,v)
+
+                D₂ᶜ = SecondDerivativeVariable(g, c̄, interior_stencil, closure_stencils)
+                return D₂ᶜ*v̄
+            end
+
+            @test apply_to_functions(v=x->1.,  c=x-> -1.) == zeros(11)
+            @test apply_to_functions(v=x->1.,  c=x-> -x ) == zeros(11)
+            @test apply_to_functions(v=x->x,   c=x->  1.) == zeros(11)
+            @test apply_to_functions(v=x->x,   c=x-> -x ) == -ones(11)
+            @test apply_to_functions(v=x->x^2, c=x->  1.) == 2ones(11)
+        end
+
+        @testset "type stability" begin
+            g = EquidistantGrid(11, 0., 10.) # h = 1
+            c̄ = evalOn(g,x-> -1)
+            v̄ = evalOn(g,x->1.)
+
+            D₂ᶜ = SecondDerivativeVariable(g, c̄, interior_stencil, closure_stencils)
+
+            @inferred SbpOperators.apply_lower(D₂ᶜ, v̄, 1)
+            @inferred SbpOperators.apply_interior(D₂ᶜ, v̄, 5)
+            @inferred SbpOperators.apply_upper(D₂ᶜ, v̄, 11)
+            @inferred (D₂ᶜ*v̄)[Index(1,Lower)]
+        end
+    end
+
+    @testset "2D" begin
+        g = EquidistantGrid((11,9), (0.,0.), (10.,8.)) # h = 1
+        c = evalOn(g, (x,y)->x+y)
+        @testset "Constructors" begin
+            @test SecondDerivativeVariable(g, c, interior_stencil, closure_stencils,1) isa LazyTensor
+            @test SecondDerivativeVariable(g, c, interior_stencil, closure_stencils,2) isa LazyTensor
+
+            D₂ᶜ = SecondDerivativeVariable(g, c, interior_stencil, closure_stencils,1)
+            @test range_dim(D₂ᶜ) == 2
+            @test domain_dim(D₂ᶜ) == 2
+
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 2)
+            @test SecondDerivativeVariable(g, c, stencil_set, 1) isa SecondDerivativeVariable
+        end
+
+        @testset "sizes" begin
+            D₂ᶜ = SecondDerivativeVariable(g, c, interior_stencil, closure_stencils,1)
+            @test range_size(D₂ᶜ) == (11,9)
+            @test domain_size(D₂ᶜ) == (11,9)
+            @test closure_size(D₂ᶜ) == 1
+
+            D₂ᶜ = SecondDerivativeVariable(g, c, interior_stencil, closure_stencils,2)
+            @test range_size(D₂ᶜ) == (11,9)
+            @test domain_size(D₂ᶜ) == (11,9)
+            @test closure_size(D₂ᶜ) == 1
+        end
+
+        @testset "application" begin
+            function apply_to_functions(dir; v, c)
+                g = EquidistantGrid((11,9), (0.,0.), (10.,8.)) # h = 1
+                c̄ = evalOn(g,c)
+                v̄ = evalOn(g,v)
+
+                D₂ᶜ = SecondDerivativeVariable(g, c̄, interior_stencil, closure_stencils,dir)
+                return D₂ᶜ*v̄
+            end
+
+            # x-direction
+            @test apply_to_functions(1,v=(x,y)->1.,  c=(x,y)-> -1.) == zeros(11,9)
+            @test apply_to_functions(1,v=(x,y)->1.,  c=(x,y)->- x ) == zeros(11,9)
+            @test apply_to_functions(1,v=(x,y)->x,   c=(x,y)->  1.) == zeros(11,9)
+            @test apply_to_functions(1,v=(x,y)->x,   c=(x,y)-> -x ) == -ones(11,9)
+            @test apply_to_functions(1,v=(x,y)->x^2, c=(x,y)->  1.) == 2ones(11,9)
+
+            @test apply_to_functions(1,v=(x,y)->1.,  c=(x,y)->- y ) == zeros(11,9)
+            @test apply_to_functions(1,v=(x,y)->y,   c=(x,y)->  1.) == zeros(11,9)
+            @test apply_to_functions(1,v=(x,y)->y,   c=(x,y)-> -y ) == zeros(11,9)
+            @test apply_to_functions(1,v=(x,y)->y^2, c=(x,y)->  1.) == zeros(11,9)
+
+            # y-direction
+            @test apply_to_functions(2,v=(x,y)->1.,  c=(x,y)-> -1.) == zeros(11,9)
+            @test apply_to_functions(2,v=(x,y)->1.,  c=(x,y)->- y ) == zeros(11,9)
+            @test apply_to_functions(2,v=(x,y)->y,   c=(x,y)->  1.) == zeros(11,9)
+            @test apply_to_functions(2,v=(x,y)->y,   c=(x,y)-> -y ) == -ones(11,9)
+            @test apply_to_functions(2,v=(x,y)->y^2, c=(x,y)->  1.) == 2ones(11,9)
+
+            @test apply_to_functions(2,v=(x,y)->1.,  c=(x,y)->- x ) == zeros(11,9)
+            @test apply_to_functions(2,v=(x,y)->x,   c=(x,y)->  1.) == zeros(11,9)
+            @test apply_to_functions(2,v=(x,y)->x,   c=(x,y)-> -x ) == zeros(11,9)
+            @test apply_to_functions(2,v=(x,y)->x^2, c=(x,y)->  1.) == zeros(11,9)
+
+
+            @testset "standard diagonal operators" begin
+                c(x,y) = exp(x) + exp(1.5(1-y))
+                v(x,y) = sin(x) + cos(1.5(1-y))
+
+                Dxv(x,y) = cos(x)*exp(x) - (exp(x) + exp(1.5 - 1.5y))*sin(x)
+                Dyv(x,y) = -1.5(1.5exp(x) + 1.5exp(1.5 - 1.5y))*cos(1.5 - 1.5y) - 2.25exp(1.5 - 1.5y)*sin(1.5 - 1.5y)
+
+                g₁ = EquidistantGrid((60,67), (0.,0.), (1.,2.))
+                g₂ = refine(g₁,2)
+
+                c̄₁ = evalOn(g₁, c)
+                c̄₂ = evalOn(g₂, c)
+
+                v̄₁ = evalOn(g₁, v)
+                v̄₂ = evalOn(g₂, v)
+
+
+                function convergence_rate_estimate(stencil_set, dir, Dv_true)
+                    D₁ = SecondDerivativeVariable(g₁, c̄₁, stencil_set, dir)
+                    D₂ = SecondDerivativeVariable(g₂, c̄₂, stencil_set, dir)
+
+                    Dv̄₁ = D₁*v̄₁
+                    Dv̄₂ = D₂*v̄₂
+
+                    Dv₁ = evalOn(g₁,Dv_true)
+                    Dv₂ = evalOn(g₂,Dv_true)
+
+                    e₁ = norm(Dv̄₁ - Dv₁)/norm(Dv₁)
+                    e₂ = norm(Dv̄₂ - Dv₂)/norm(Dv₂)
+
+                    return log2(e₁/e₂)
+                end
+
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 2)
+                @test convergence_rate_estimate(stencil_set, 1, Dxv) ≈ 1.5 rtol = 1e-1
+                @test convergence_rate_estimate(stencil_set, 2, Dyv) ≈ 1.5 rtol = 1e-1
+
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 4)
+                @test convergence_rate_estimate(stencil_set, 1, Dxv) ≈ 2.5 rtol = 1e-1
+                @test convergence_rate_estimate(stencil_set, 2, Dyv) ≈ 2.5 rtol = 2e-1
+            end
+        end
+    end
+end
+