Mercurial > repos > public > sbplib_julia
changeset 875:067a322e4f73 laplace_benchmarks
Merge with feature/laplace_opset
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 27 Jan 2022 10:55:08 +0100 |
parents | 7e9ebd572deb (diff) 6a4d36eccf39 (current diff) |
children | 4f3924293894 |
files | src/SbpOperators/volumeops/laplace/laplace.jl |
diffstat | 5 files changed, 182 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/laplace_benchmark.jl Thu Jan 27 10:55:08 2022 +0100 @@ -0,0 +1,42 @@ +using Sbplib.Grids, Sbplib.SbpOperators, Sbplib.LazyTensors, Sbplib.RegionIndices +using Profile, BenchmarkTools + +function apply_laplace!(f, u, L, inds) + for I in inds + f[I] = (L*u)[I] + end +end + +apply_laplace!(f, u, L) = apply_laplace!(f, u, L, eachindex(u)) + +region_indices(L, N, ::Lower) = map(x->Index{Lower}(x),1:closure_size(L)) +region_indices(L, N, ::Interior) = map(x->Index{Interior}(x),closure_size(L)+1:N-closure_size(L)) +region_indices(L, N, ::Upper) = map(x->Index{Upper}(x),N-closure_size(L)+1:N) + +function get_region_indices(L,N) + ind_lower = region_indices(L, N, Lower()) + ind_interior = region_indices(L, N, Interior()) + ind_upper = region_indices(L, N, Upper()) + return (ind_lower, ind_interior, ind_upper) +end + +function apply_laplace_regions!(f, u, L, region_inds) + apply_laplace!(f, u, L, region_inds[1]) + apply_laplace!(f, u, L, region_inds[2]) + apply_laplace!(f, u, L, region_inds[3]) +end + +# Domain +N = 4001 +g = EquidistantGrid(N,0.,1.) + +# Operators +L = Laplace(g,sbp_operators_path()*"standard_diagonal.toml"; order=4) +u = evalOn(g,x->x^2) +f = similar(u) + +apply_laplace!(f,u,L) #ensure compilation +@btime apply_laplace!(f,u,L) +rinds = get_region_indices(L,N) +apply_laplace_regions!(f,u,L,rinds) #ensure compilation +@btime apply_laplace_regions!(f,u,L,rinds)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/laplace_benchmark.m Thu Jan 27 10:55:08 2022 +0100 @@ -0,0 +1,14 @@ +m = 4001; +ops = sbp.D2Standard(m,{0,1},4); +D2 = ops.D2; +u = linspace(0,1,m)'; +f = zeros(size(u)); + +nsample = 10000; +ts = zeros(nsample,1); + +for i = 1:nsample + tic; f = D2*u; t = toc; + ts(i) = t; +end +min(ts) \ No newline at end of file
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Tue Jan 25 10:36:13 2022 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Thu Jan 27 10:55:08 2022 +0100 @@ -70,7 +70,7 @@ d_pairs = map(id -> Pair(id, normal_derivative(grid, d_closure_stencil, id)), ids) Hᵧ_pairs = map(id -> Pair(id, inner_product(boundary_grid(grid, id), H_inner_stencils, H_closure_stencils)), ids) - return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs)) + return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs), order) end # TODO: Consider pretty printing of the following form @@ -81,6 +81,14 @@ LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) +""" + closure_size(L::Lapalace) + +Returns the inner product operator associated with `L` + +""" +closure_size(L::Laplace) = closure_size(L.D) +export closure_size """ inner_product(L::Laplace) @@ -143,6 +151,25 @@ boundary_quadrature(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.H_boundary[ids[i]],N) boundary_quadrature(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.H_boundary[ids[i]],N) +abstract type BoundaryConditionType end +struct NeumannBC <: BoundaryConditionType end +struct DirichletBC <: BoundaryConditionType end +export NeumannBC + +boundary_condition(L, id, ::NeumannBC) = neumann_bc(L, id) +boundary_condition(L, id, ::DirichletBC) = dirichlet_bc(L, id) +export boundary_condition + +function neumann_bc(L::Laplace, id::BoundaryIdentifier) + H_inv = inverse_inner_product(L) + e = boundary_restriction(L,id) + d = normal_derivative(L,id) + H_b = boundary_quadrature(L,id) + tau = H_inv∘e'∘H_b + closure = tau∘d + # TODO: Return penalty once we have implemented scalar scaling of the operators. + return closure +end """ laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wave_eq.jl Thu Jan 27 10:55:08 2022 +0100 @@ -0,0 +1,98 @@ +using Sbplib.Grids, Sbplib.SbpOperators, Sbplib.LazyTensors, Sbplib.RegionIndices +using OrdinaryDiffEq, Plots, Printf, Base.Threads + +function apply_tm!(f,u,tm,ind) + for I in ind + @inbounds f[I] = (tm*u)[I] + end +end + +function apply_tm_all_regions!(f,u,tm,rinds) + apply_tm!(f,u,tm,rinds[1]) + apply_tm!(f,u,tm,rinds[2]) + apply_tm!(f,u,tm,rinds[3]) +end + +region_indices(L, N, ::Lower) = map(x->Index{Lower}(x),1:closure_size(L)) +region_indices(L, N, ::Interior) = map(x->Index{Interior}(x),closure_size(L)+1:N-closure_size(L)) +region_indices(L, N, ::Upper) = map(x->Index{Upper}(x),N-closure_size(L)+1:N) + +function get_region_indices(L,N) + ind_lower = region_indices(L, N, Lower()) + ind_interior = region_indices(L, N, Interior()) + ind_upper = region_indices(L, N, Upper()) + return (ind_lower, ind_interior, ind_upper) +end + +function wave_eq_sim(alg,T,CFL) + # Domain + N = 101 + g = EquidistantGrid(N,0.,1.) + dx = min(spacing(g)...) + + # Spatial discretization + Δ = Laplace(g,sbp_operators_path()*"standard_diagonal.toml"; order=4) + (id_l, id_r) = boundary_identifiers(g) + SAT_l = boundary_condition(Δ,id_l,NeumannBC()) + SAT_r = boundary_condition(Δ,id_r,NeumannBC()) + tm = (Δ + SAT_l + SAT_r) + + # RHS function + rinds = get_region_indices(Δ,N) + function f(du,u,p,t) + du[1:N] .= u[N+1:end] + apply_tm_all_regions!(view(du,N+1:2*N), view(u,1:N), tm, rinds) + end + # Initial condition + sigma = 0.1 + ic_u = x->1/(sigma*sqrt(2*pi))*exp(-1/2*((x-0.5)^2/sigma^2)) + ic_u_t = x->0 + w0 = [evalOn(g,ic_u); + evalOn(g,ic_u_t)] + # Setup ODE and solve + tspan = (0.,T) + prob = ODEProblem(f,w0,tspan) + sol = solve(prob, alg, dt=CFL*dx, saveat=0.05) + + # Plotting + x = [x[1] for x in points(g)] + anim = @animate for i ∈ eachindex(sol.t) + u_i = sol.u[i] + plot(x, u_i[1:N], ylims = (0,4), lw=3,ls=:dash,label="",title=@sprintf("u at t = %.3f", sol.t[i])) + end + gif(anim, "wave.gif", fps = 15) +end + +wave_eq_sim(CarpenterKennedy2N54(),1.,0.25) + +# function boundary_condition(L,id; ) +# neumann_closure +# neumann_penalty +# end +# +# function neumann_bc(L,id) +# e = boundary_restriction.(L,ids) +# d = normal_derivative(L,ids) +# return (e'∘d,) +# end +# +# function (closure, penalty) neumann_bc(L,id,g::Function) +# e = boundary_restriction.(L,ids) +# d = normal_derivative.(L,ids) +# return e'∘d +# end +# +# function dirichlet_closure(L,id) +# e = boundary_restriction.(L,ids) +# d = normal_derivative.(L,ids) +# return ... +# end +# +# function SAT(L,ids,BCs) +# BC = BCs(L,ids[1]) +# for i = 2:length(ids) +# BC = BC+ BCs(L,ids[1]) +# end +# H_inv = inverse_inner_product(L) +# return H_inv∘BC +# end