changeset 184:6945c15a6a7a boundary_conditions

Rename package LazyTensor to LazyTensors
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 20 Jun 2019 21:14:20 +0200
parents b78548f98a75
children 67da5ce895d8
files LazyTensor/Manifest.toml LazyTensor/Project.toml LazyTensor/src/LazyTensor.jl LazyTensor/test/runtests.jl LazyTensors/Manifest.toml LazyTensors/Project.toml LazyTensors/src/LazyTensors.jl LazyTensors/test/runtests.jl
diffstat 8 files changed, 233 insertions(+), 233 deletions(-) [+]
line wrap: on
line diff
--- a/LazyTensor/Manifest.toml	Thu Jun 20 21:13:07 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-# This file is machine-generated - editing it directly is not advised
-
--- a/LazyTensor/Project.toml	Thu Jun 20 21:13:07 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,10 +0,0 @@
-name = "LazyTensor"
-uuid = "62fbed2c-918d-11e9-279b-eb3a325b37d3"
-authors = ["Jonatan Werpers <jonatan.werpers@it.uu.se>"]
-version = "0.1.0"
-
-[extras]
-Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
-
-[targets]
-test = ["Test"]
--- a/LazyTensor/src/LazyTensor.jl	Thu Jun 20 21:13:07 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,165 +0,0 @@
-module LazyTensor
-
-
-"""
-    Mapping{T,R,D}
-
-Describes a mapping of a D dimension tensor to an R dimension tensor.
-The action of the mapping is implemented through the method
-
-    apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
-
-The size of range tensor should be dependent on the size of the domain tensor
-and the type should implement the methods
-
-    range_size(::Mapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D}
-    domain_size(::Mapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D}
-
-to allow querying for one or the other.
-
-Optionally the action of the transpose may be defined through
-    apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
-"""
-abstract type Mapping{T,R,D} end
-
-"""
-    apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
-
-Return the result of the mapping for a given index.
-"""
-function apply end
-export apply
-
-"""
-    apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T}
-
-Return the result of the transposed mapping for a given index.
-"""
-function apply_transpose end
-export apply_transpose
-
-"""
-Return the dimension of the range space of a given mapping
-"""
-range_dim(::Mapping{T,R,D}) where {T,R,D} = R
-
-"""
-Return the dimension of the domain space of a given mapping
-"""
-domain_dim(::Mapping{T,R,D}) where {T,R,D} = D
-
-export range_dim, domain_dim
-
-"""
-    range_size(M::Mapping, domain_size)
-
-Return the resulting range size for the mapping applied to a given domain_size
-"""
-function range_size end
-
-"""
-    domain_size(M::Mapping, range_size)
-
-Return the resulting domain size for the mapping applied to a given range_size
-"""
-function domain_size end
-
-export range_size, domain_size
-# TODO: Think about boundschecking!
-
-
-"""
-    Operator{T,D}
-
-A `Mapping{T,D,D}` where the range and domain tensor have the same number of
-dimensions and the same size.
-"""
-abstract type Operator{T,D} <: Mapping{T,D,D} end
-domain_size(::Operator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size
-range_size(::Operator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size
-
-
-
-"""
-    MappingTranspose{T,R,D} <: Mapping{T,D,R}
-
-Struct for lazy transpose of a Mapping.
-
-If a mapping implements the the `apply_transpose` method this allows working with
-the transpose of mapping `m` by using `m'`. `m'` will work as a regular Mapping lazily calling
-the appropriate methods of `m`.
-"""
-struct MappingTranspose{T,R,D} <: Mapping{T,D,R}
-    tm::Mapping{T,R,D}
-end
-
-# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors?
-Base.adjoint(t::Mapping) = MappingTranspose(t)
-Base.adjoint(t::MappingTranspose) = t.tm
-
-apply(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...)
-apply_transpose(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...)
-
-range_size(tmt::MappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size)
-domain_size(tmt::MappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size)
-
-
-"""
-    Application{T,R,D} <: AbstractArray{T,R}
-
-Struct for lazy application of a Mapping. Created using `*`.
-
-Allows the result of a `Mapping` applied to a vector to be treated as an `AbstractArray`.
-With a mapping `m` and a vector `v` the Application object can be created by `m*v`.
-The actual result will be calcualted when indexing into `m*v`.
-"""
-struct Application{T,R,D} <: AbstractArray{T,R}
-    t::Mapping{T,R,D}
-    o::AbstractArray{T,D}
-end
-
-Base.:*(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o)
-
-Base.getindex(ta::Application{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...)
-Base.size(ta::Application{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o))
-# TODO: What else is needed to implement the AbstractArray interface?
-
-
-# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
-Base.:*(args::Union{Mapping{T}, AbstractArray{T}}...) where T = foldr(*,args)
-# # Should we overload some other infix binary operator?
-# →(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o)
-# TODO: We need to be really careful about good error messages.
-# For example what happens if you try to multiply Application with a Mapping(wrong order)?
-
-
-
-# struct TensorMappingComposition{T,R,K,D} <: Mapping{T,R,D}
-#     t1::Mapping{T,R,K}
-#     t2::Mapping{T,K,D}
-# end
-
-# Base.:∘(s::Mapping{T,R,K}, t::Mapping{T,K,D}) where {T,R,K,D} = TensorMappingComposition(s,t)
-
-# function range_size(tm::TensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D}
-#     range_size(tm.t1, domain_size(tm.t2, domain_size))
-# end
-
-# function domain_size(tm::TensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D}
-#     domain_size(tm.t1, domain_size(tm.t2, range_size))
-# end
-
-# function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
-#     apply(c.t1, Application(c.t2,v), I...)
-# end
-
-# function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
-#     apply_transpose(c.t2, Application(c.t1',v), I...)
-# end
-
-# # Have i gone too crazy with the type parameters? Maybe they aren't all needed?
-
-# export →
-
-
-end # module
--- a/LazyTensor/test/runtests.jl	Thu Jun 20 21:13:07 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,56 +0,0 @@
-using Test
-using LazyTensor
-
-
-
-@testset "Generic Mapping methods" begin
-    struct DummyMapping{T,R,D} <: LazyTensor.Mapping{T,R,D} end
-    LazyTensor.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply
-    @test range_dim(DummyMapping{Int,2,3}()) == 2
-    @test domain_dim(DummyMapping{Int,2,3}()) == 3
-    @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),0) == :apply
-end
-
-struct DummyOperator{T,D} <: LazyTensor.Operator{T,D} end
-@testset "Generic Operator methods" begin
-    @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5)
-    @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1)
-end
-
-@testset "Mapping transpose" begin
-    struct DummyMapping{T,R,D} <: LazyTensor.Mapping{T,R,D} end
-
-    LazyTensor.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply
-    LazyTensor.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose
-
-    LazyTensor.range_size(m::DummyMapping{T,R,D}, domain_size) where {T,R,D} = :range_size
-    LazyTensor.domain_size(m::DummyMapping{T,R,D}, range_size) where {T,R,D} = :domain_size
-
-    m = DummyMapping{Float64,2,3}()
-    @test m'' == m
-    @test apply(m',zeros(Float64,(0,0)),0) == :apply_transpose
-    @test apply(m'',zeros(Float64,(0,0,0)),0) == :apply
-    @test apply_transpose(m', zeros(Float64,(0,0,0)),0) == :apply
-
-    @test range_size(m', (0,0)) == :domain_size
-    @test domain_size(m', (0,0,0)) == :range_size
-end
-
-@testset "TensorApplication" begin
-    struct DummyMapping{T,R,D} <: LazyTensor.Mapping{T,R,D} end
-
-    LazyTensor.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = (:apply,v,i)
-    LazyTensor.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose
-
-    LazyTensor.range_size(m::DummyMapping{T,R,D}, domain_size) where {T,R,D} = 2 .* domain_size
-    LazyTensor.domain_size(m::DummyMapping{T,R,D}, range_size) where {T,R,D} = range_size.÷2
-
-
-    m = DummyMapping{Int, 1, 1}()
-    v = [0,1,2]
-    @test m*v isa AbstractVector{Int}
-    @test size(m*v) == 2 .*size(v)
-    @test (m*v)[0] == (:apply,v,0)
-    @test m*m*v isa AbstractVector{Int}
-    @test (m*m*v)[0] == (:apply,m*v,0)
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LazyTensors/Manifest.toml	Thu Jun 20 21:14:20 2019 +0200
@@ -0,0 +1,2 @@
+# This file is machine-generated - editing it directly is not advised
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LazyTensors/Project.toml	Thu Jun 20 21:14:20 2019 +0200
@@ -0,0 +1,10 @@
+name = "LazyTensors"
+uuid = "62fbed2c-918d-11e9-279b-eb3a325b37d3"
+authors = ["Jonatan Werpers <jonatan.werpers@it.uu.se>"]
+version = "0.1.0"
+
+[extras]
+Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
+
+[targets]
+test = ["Test"]
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LazyTensors/src/LazyTensors.jl	Thu Jun 20 21:14:20 2019 +0200
@@ -0,0 +1,165 @@
+module LazyTensors
+
+
+"""
+    Mapping{T,R,D}
+
+Describes a mapping of a D dimension tensor to an R dimension tensor.
+The action of the mapping is implemented through the method
+
+    apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
+
+The size of range tensor should be dependent on the size of the domain tensor
+and the type should implement the methods
+
+    range_size(::Mapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D}
+    domain_size(::Mapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D}
+
+to allow querying for one or the other.
+
+Optionally the action of the transpose may be defined through
+    apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
+"""
+abstract type Mapping{T,R,D} end
+
+"""
+    apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
+
+Return the result of the mapping for a given index.
+"""
+function apply end
+export apply
+
+"""
+    apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T}
+
+Return the result of the transposed mapping for a given index.
+"""
+function apply_transpose end
+export apply_transpose
+
+"""
+Return the dimension of the range space of a given mapping
+"""
+range_dim(::Mapping{T,R,D}) where {T,R,D} = R
+
+"""
+Return the dimension of the domain space of a given mapping
+"""
+domain_dim(::Mapping{T,R,D}) where {T,R,D} = D
+
+export range_dim, domain_dim
+
+"""
+    range_size(M::Mapping, domain_size)
+
+Return the resulting range size for the mapping applied to a given domain_size
+"""
+function range_size end
+
+"""
+    domain_size(M::Mapping, range_size)
+
+Return the resulting domain size for the mapping applied to a given range_size
+"""
+function domain_size end
+
+export range_size, domain_size
+# TODO: Think about boundschecking!
+
+
+"""
+    Operator{T,D}
+
+A `Mapping{T,D,D}` where the range and domain tensor have the same number of
+dimensions and the same size.
+"""
+abstract type Operator{T,D} <: Mapping{T,D,D} end
+domain_size(::Operator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size
+range_size(::Operator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size
+
+
+
+"""
+    MappingTranspose{T,R,D} <: Mapping{T,D,R}
+
+Struct for lazy transpose of a Mapping.
+
+If a mapping implements the the `apply_transpose` method this allows working with
+the transpose of mapping `m` by using `m'`. `m'` will work as a regular Mapping lazily calling
+the appropriate methods of `m`.
+"""
+struct MappingTranspose{T,R,D} <: Mapping{T,D,R}
+    tm::Mapping{T,R,D}
+end
+
+# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors?
+Base.adjoint(t::Mapping) = MappingTranspose(t)
+Base.adjoint(t::MappingTranspose) = t.tm
+
+apply(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...)
+apply_transpose(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...)
+
+range_size(tmt::MappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size)
+domain_size(tmt::MappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size)
+
+
+"""
+    Application{T,R,D} <: AbstractArray{T,R}
+
+Struct for lazy application of a Mapping. Created using `*`.
+
+Allows the result of a `Mapping` applied to a vector to be treated as an `AbstractArray`.
+With a mapping `m` and a vector `v` the Application object can be created by `m*v`.
+The actual result will be calcualted when indexing into `m*v`.
+"""
+struct Application{T,R,D} <: AbstractArray{T,R}
+    t::Mapping{T,R,D}
+    o::AbstractArray{T,D}
+end
+
+Base.:*(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o)
+
+Base.getindex(ta::Application{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...)
+Base.size(ta::Application{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o))
+# TODO: What else is needed to implement the AbstractArray interface?
+
+
+# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
+Base.:*(args::Union{Mapping{T}, AbstractArray{T}}...) where T = foldr(*,args)
+# # Should we overload some other infix binary operator?
+# →(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o)
+# TODO: We need to be really careful about good error messages.
+# For example what happens if you try to multiply Application with a Mapping(wrong order)?
+
+
+
+# struct TensorMappingComposition{T,R,K,D} <: Mapping{T,R,D}
+#     t1::Mapping{T,R,K}
+#     t2::Mapping{T,K,D}
+# end
+
+# Base.:∘(s::Mapping{T,R,K}, t::Mapping{T,K,D}) where {T,R,K,D} = TensorMappingComposition(s,t)
+
+# function range_size(tm::TensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D}
+#     range_size(tm.t1, domain_size(tm.t2, domain_size))
+# end
+
+# function domain_size(tm::TensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D}
+#     domain_size(tm.t1, domain_size(tm.t2, range_size))
+# end
+
+# function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
+#     apply(c.t1, Application(c.t2,v), I...)
+# end
+
+# function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
+#     apply_transpose(c.t2, Application(c.t1',v), I...)
+# end
+
+# # Have i gone too crazy with the type parameters? Maybe they aren't all needed?
+
+# export →
+
+
+end # module
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LazyTensors/test/runtests.jl	Thu Jun 20 21:14:20 2019 +0200
@@ -0,0 +1,56 @@
+using Test
+using LazyTensors
+
+
+
+@testset "Generic Mapping methods" begin
+    struct DummyMapping{T,R,D} <: LazyTensors.Mapping{T,R,D} end
+    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply
+    @test range_dim(DummyMapping{Int,2,3}()) == 2
+    @test domain_dim(DummyMapping{Int,2,3}()) == 3
+    @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),0) == :apply
+end
+
+struct DummyOperator{T,D} <: LazyTensors.Operator{T,D} end
+@testset "Generic Operator methods" begin
+    @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5)
+    @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1)
+end
+
+@testset "Mapping transpose" begin
+    struct DummyMapping{T,R,D} <: LazyTensors.Mapping{T,R,D} end
+
+    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply
+    LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose
+
+    LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size) where {T,R,D} = :range_size
+    LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size) where {T,R,D} = :domain_size
+
+    m = DummyMapping{Float64,2,3}()
+    @test m'' == m
+    @test apply(m',zeros(Float64,(0,0)),0) == :apply_transpose
+    @test apply(m'',zeros(Float64,(0,0,0)),0) == :apply
+    @test apply_transpose(m', zeros(Float64,(0,0,0)),0) == :apply
+
+    @test range_size(m', (0,0)) == :domain_size
+    @test domain_size(m', (0,0,0)) == :range_size
+end
+
+@testset "TensorApplication" begin
+    struct DummyMapping{T,R,D} <: LazyTensors.Mapping{T,R,D} end
+
+    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = (:apply,v,i)
+    LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose
+
+    LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size) where {T,R,D} = 2 .* domain_size
+    LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size) where {T,R,D} = range_size.÷2
+
+
+    m = DummyMapping{Int, 1, 1}()
+    v = [0,1,2]
+    @test m*v isa AbstractVector{Int}
+    @test size(m*v) == 2 .*size(v)
+    @test (m*v)[0] == (:apply,v,0)
+    @test m*m*v isa AbstractVector{Int}
+    @test (m*m*v)[0] == (:apply,m*v,0)
+end
\ No newline at end of file