changeset 228:5acef2d5db2e boundary_conditions

Move Laplace operator and related structs/functions to separate file.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 26 Jun 2019 14:38:01 +0200
parents 3ab0c61f1367
children cd60382f392b
files DiffOps/src/DiffOps.jl DiffOps/src/laplace.jl
diffstat 2 files changed, 134 insertions(+), 136 deletions(-) [+]
line wrap: on
line diff
--- a/DiffOps/src/DiffOps.jl	Wed Jun 26 14:02:28 2019 +0200
+++ b/DiffOps/src/DiffOps.jl	Wed Jun 26 14:38:01 2019 +0200
@@ -4,8 +4,6 @@
 using SbpOperators
 using Grids
 
-export Laplace
-
 abstract type DiffOp end
 
 # TBD: The "error("not implemented")" thing seems to be hiding good error information. How to fix that? Different way of saying that these should be implemented?
@@ -91,146 +89,15 @@
 
 export apply
 
-struct NormalDerivative{N,M,K}
-	op::D2{Float64,N,M,K}
-	grid::EquidistantGrid
-	bId::CartesianBoundary
-end
-
-function apply_transpose(d::NormalDerivative, v::AbstractArray, I::Integer)
-	u = selectdim(v,3-dim(d.bId),I)
-	return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId))
-end
-
-# Not correct abstraction level
-# TODO: Not type stable D:<
-function apply(d::NormalDerivative, v::AbstractArray, I::Tuple{Integer,Integer})
-	i = I[dim(d.bId)]
-	j = I[3-dim(d.bId)]
-	N_i = d.grid.size[dim(d.bId)]
-
-	r = getregion(i, closureSize(d.op), N_i)
-
-	if r != region(d.bId)
-		return 0
-	end
-
-	if r == Lower
-		# Note, closures are indexed by offset. Fix this D:<
-		return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j]
-	elseif r == Upper
-		return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-j]*v[j]
-	end
-end
-
-struct BoundaryValue{N,M,K}
-	op::D2{Float64,N,M,K}
-	grid::EquidistantGrid
-	bId::CartesianBoundary
-end
-
-function apply(e::BoundaryValue, v::AbstractArray, I::Tuple{Integer,Integer})
-	i = I[dim(e.bId)]
-	j = I[3-dim(e.bId)]
-	N_i = e.grid.size[dim(e.bId)]
-
-	r = getregion(i, closureSize(e.op), N_i)
-
-	if r != region(e.bId)
-		return 0
-	end
-
-	if r == Lower
-		# Note, closures are indexed by offset. Fix this D:<
-		return e.op.eClosure[i-1]*v[j]
-	elseif r == Upper
-		return e.op.eClosure[N_i-j]*v[j]
-	end
-end
-
-function apply_transpose(e::BoundaryValue, v::AbstractArray, I::Integer)
-	u = selectdim(v,3-dim(e.bId),I)
-	return apply_e(e.op, u, region(e.bId))
-end
-
-struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim}
-    grid::EquidistantGrid{Dim,T}
-    a::T
-    op::D2{Float64,N,M,K}
-    # e::BoundaryValue
-    # d::NormalDerivative
-end
-
-function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim
-    error("not implemented")
-end
-
-# u = L*v
-function apply(L::Laplace{1}, v::AbstractVector, i::Int)
-    uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i)
-    return uᵢ
-end
-
-@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2}
-    # 2nd x-derivative
-    @inbounds vx = view(v, :, Int(I[2]))
-    @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1])
-    # 2nd y-derivative
-    @inbounds vy = view(v, Int(I[1]), :)
-    @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2])
-    # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors
-    return uᵢ
-end
-
-# Slow but maybe convenient?
-function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2})
-    I = Index{Unknown}.(Tuple(i))
-    apply(L, v, I)
-end
-
-struct BoundaryOperator
-
-end
-
-
 """
 A BoundaryCondition should implement the method
     sat(::DiffOp, v::AbstractArray, data::AbstractArray, ...)
 """
 abstract type BoundaryCondition end
 
-struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
-
-function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
-    e = BoundaryValue(L.op, L.grid, Bid())
-    d = NormalDerivative(L.op, L.grid, Bid())
-    Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid())
-    # TODO: Implement BoundaryQuadrature method
-
-    return -L.Hi*e*Hᵧ*(d'*v - g)
-    # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on
-end
-
-struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
-    tau::Float64
-end
 
-function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
-    e = BoundaryValue(L.op, L.grid, Bid())
-    d = NormalDerivative(L.op, L.grid, Bid())
-    Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid())
-    # TODO: Implement BoundaryQuadrature method
-
-    return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g)
-    # Need to handle scalar multiplication and addition of TensorMapping
-end
+include("laplace.jl")
+export Laplace
 
-# function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
-# 	return apply(s.L, v, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau),  v, s.g_w, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau),  v, s.g_e, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau),  v, s.g_s, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau),  v, s.g_n, i)
-# end
 
-end # module
\ No newline at end of file
+end # module
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DiffOps/src/laplace.jl	Wed Jun 26 14:38:01 2019 +0200
@@ -0,0 +1,131 @@
+struct NormalDerivative{N,M,K}
+	op::D2{Float64,N,M,K}
+	grid::EquidistantGrid
+	bId::CartesianBoundary
+end
+
+function apply_transpose(d::NormalDerivative, v::AbstractArray, I::Integer)
+	u = selectdim(v,3-dim(d.bId),I)
+	return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId))
+end
+
+# Not correct abstraction level
+# TODO: Not type stable D:<
+function apply(d::NormalDerivative, v::AbstractArray, I::Tuple{Integer,Integer})
+	i = I[dim(d.bId)]
+	j = I[3-dim(d.bId)]
+	N_i = d.grid.size[dim(d.bId)]
+
+	r = getregion(i, closureSize(d.op), N_i)
+
+	if r != region(d.bId)
+		return 0
+	end
+
+	if r == Lower
+		# Note, closures are indexed by offset. Fix this D:<
+		return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j]
+	elseif r == Upper
+		return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-j]*v[j]
+	end
+end
+
+struct BoundaryValue{N,M,K}
+	op::D2{Float64,N,M,K}
+	grid::EquidistantGrid
+	bId::CartesianBoundary
+end
+
+function apply(e::BoundaryValue, v::AbstractArray, I::Tuple{Integer,Integer})
+	i = I[dim(e.bId)]
+	j = I[3-dim(e.bId)]
+	N_i = e.grid.size[dim(e.bId)]
+
+	r = getregion(i, closureSize(e.op), N_i)
+
+	if r != region(e.bId)
+		return 0
+	end
+
+	if r == Lower
+		# Note, closures are indexed by offset. Fix this D:<
+		return e.op.eClosure[i-1]*v[j]
+	elseif r == Upper
+		return e.op.eClosure[N_i-j]*v[j]
+	end
+end
+
+function apply_transpose(e::BoundaryValue, v::AbstractArray, I::Integer)
+	u = selectdim(v,3-dim(e.bId),I)
+	return apply_e(e.op, u, region(e.bId))
+end
+
+struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim}
+    grid::EquidistantGrid{Dim,T}
+    a::T
+    op::D2{Float64,N,M,K}
+    # e::BoundaryValue
+    # d::NormalDerivative
+end
+
+function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim
+    error("not implemented")
+end
+
+# u = L*v
+function apply(L::Laplace{1}, v::AbstractVector, i::Int)
+    uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i)
+    return uᵢ
+end
+
+@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2}
+    # 2nd x-derivative
+    @inbounds vx = view(v, :, Int(I[2]))
+    @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1])
+    # 2nd y-derivative
+    @inbounds vy = view(v, Int(I[1]), :)
+    @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2])
+    # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors
+    return uᵢ
+end
+
+# Slow but maybe convenient?
+function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2})
+    I = Index{Unknown}.(Tuple(i))
+    apply(L, v, I)
+end
+
+
+struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
+
+function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
+    e = BoundaryValue(L.op, L.grid, Bid())
+    d = NormalDerivative(L.op, L.grid, Bid())
+    Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid())
+    # TODO: Implement BoundaryQuadrature method
+
+    return -L.Hi*e*Hᵧ*(d'*v - g)
+    # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on
+end
+
+struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
+    tau::Float64
+end
+
+function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
+    e = BoundaryValue(L.op, L.grid, Bid())
+    d = NormalDerivative(L.op, L.grid, Bid())
+    Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid())
+    # TODO: Implement BoundaryQuadrature method
+
+    return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g)
+    # Need to handle scalar multiplication and addition of TensorMapping
+end
+
+# function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
+# 	return apply(s.L, v, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau),  v, s.g_w, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau),  v, s.g_e, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau),  v, s.g_s, i) +
+# 		sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau),  v, s.g_n, i)
+# end