Mercurial > repos > public > sbplib_julia
changeset 29:19078a768c5a
Merge
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 10 Jan 2019 10:48:28 +0100 |
parents | 32a53cbee6c5 (diff) 55fea1ceb6aa (current diff) |
children | e86c65958aa1 91e662512e9a |
files | |
diffstat | 2 files changed, 102 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/TimeStepper.jl Thu Jan 10 10:12:11 2019 +0100 +++ b/TimeStepper.jl Thu Jan 10 10:48:28 2019 +0100 @@ -6,7 +6,7 @@ end -function step(ts::TimeStepper) +function step!(ts::TimeStepper) error("not implemented") end @@ -45,7 +45,7 @@ return ts.t, ts.v end -function step(ts::Rk4) +function step!(ts::Rk4) k1 = ts.F(ts.v,ts.t) k2 = ts.F(ts.v+0.5*ts.k*k1,ts.t+0.5*ts.k) k3 = ts.F(ts.v+0.5*ts.k*k2,ts.t+0.5*ts.k)
--- a/grid.jl Thu Jan 10 10:12:11 2019 +0100 +++ b/grid.jl Thu Jan 10 10:48:28 2019 +0100 @@ -1,47 +1,120 @@ module grid +using Plots abstract type Grid end function numberOfDimensions(grid::Grid) - error("Not yet implemented") + error("Not implemented for abstact type Grid") end function numberOfPoints(grid::Grid) - error("Not yet implemented") + error("Not implemented for abstact type Grid") end function points(grid::Grid) - error("Not yet implemented") + error("Not implemented for abstact type Grid") end +# TODO: Should this be here? abstract type BoundaryId end -# Move to seperate file. +# EquidistantGrid is a grid with equidisant grid spacing per coordinat +# direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ +# by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto +# the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) +# the domain is defined as (-1,1)x(0,2). struct EquidistantGrid <: Grid - numberOfDimensions::UInt - numberOfPoints::Vector{UInt} - limits::Vector{Pair{Real, Real}} - function EquidistantGrid(nDims, nPoints, lims) - @assert nDims == size(nPoints) - return new(nDims, nPoints, lims) + numberOfPointsPerDim::Tuple # First coordinate direction stored first, then + # second, then third. + limits::NTuple{2,Tuple} # Stores the two points which defines the range of + # the e.g (-1,0) and (1,2) for a domain of size + # (-1,1)x(0,2) + + # General constructor + function EquidistantGrid(nPointsPerDim::Tuple, lims::NTuple{2,Tuple}) + @assert length(nPointsPerDim) > 0 + @assert count(x -> x > 0, nPointsPerDim) == length(nPointsPerDim) + @assert length(lims[1]) == length(nPointsPerDim) + @assert length(lims[2]) == length(nPointsPerDim) + # TODO: Assert that the same values are not passed in both lims[1] and lims[2] + # i.e the domain length is positive for all dimensions + return new(nPointsPerDim, lims) + end + # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) + function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Integer}) + return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) + end + +end + +# Returns the number of dimensions of an EquidistantGrid. +# +# @Input: grid - an EquidistantGrid +# @Return: numberOfPoints - The number of dimensions +function numberOfDimensions(grid::EquidistantGrid) + return length(grid.numberOfPointsPerDim) +end + +# Computes the total number of points of an EquidistantGrid. +# +# @Input: grid - an EquidistantGrid +# @Return: numberOfPoints - The total number of points +function numberOfPoints(grid::EquidistantGrid) + numberOfPoints = grid.numberOfPointsPerDim[1]; + for i = 2:length(grid.numberOfPointsPerDim); + numberOfPoints = numberOfPoints*grid.numberOfPointsPerDim[i] + end + return numberOfPoints +end + +# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance +# between two points for each coordinate direction. +# +# @Input: grid - an EquidistantGrid +# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. +function spacings(grid::EquidistantGrid) + h̄ = Vector{Real}(undef, numberOfDimensions(grid)) + for i ∈ eachindex(h̄) + h̄[i] = abs(grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) + end + return Tuple(h̄) +end + +# Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered +# such that points in the first coordinate direction varies first, then the second +# and lastely the third (if applicable) +# +# @Input: grid - an EquidistantGrid +# @Return: points - the points of the grid. +function points(grid::EquidistantGrid) + # Compute signed grid spacings + dx̄ = Vector{Real}(undef, numberOfDimensions(grid)) + for i ∈ eachindex(dx̄) + dx̄[i] = (grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) + end + dx̄ = Tuple(dx̄) + + nPoints = numberOfPoints(grid) + points = Vector{NTuple{numberOfDimensions(grid),Real}}(undef, nPoints) + # Compute the points based on their Cartesian indices and the signed + # grid spacings + cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) + for i ∈ 1:nPoints + ci = Tuple(cartesianIndices[i]) .-1 + points[i] = grid.limits[1] .+ dx̄.*ci + end + return points +end + +function plotOnGrid(grid::EquidistantGrid,v::Vector) + dim = numberOfDimensions(grid) + x = points(grid) + + if dim ==1 + plot(x,v) + else + error(string("Plot not implemented for dim =", string(dim))) end end -function numberOfDimensions(grid::EquidistantGrid) - return grid.numberOfDimensions end - -function numberOfPoints(grid::EquidistantGrid) - return grid.numberOfPoints -end - -function points(grid::EquidistantGrid) - points::Matrix{Real,3}(undef, numberOfPoints(grid)) - return points -end - -function limitsForDimension(grid::EquidistantGrid, dim::UInt) - return grid.limits(dim) -end - -end