Mercurial > repos > public > sbplib_julia
changeset 1283:54c3ed752730 refactor/grids
Make tests for normal_derivative work
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 01 Mar 2023 08:28:14 +0100 |
parents | 11b08b242e48 |
children | 7d52c4835d15 |
files | src/SbpOperators/boundaryops/normal_derivative.jl test/SbpOperators/boundaryops/normal_derivative_test.jl |
diffstat | 2 files changed, 24 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/boundaryops/normal_derivative.jl Mon Feb 27 15:39:13 2023 +0100 +++ b/src/SbpOperators/boundaryops/normal_derivative.jl Wed Mar 01 08:28:14 2023 +0100 @@ -1,5 +1,5 @@ """ - normal_derivative(grid, closure_stencil::Stencil, boundary) + normal_derivative(g, closure_stencil::Stencil, boundary) Creates the normal derivative boundary operator `d` as a `LazyTensor` @@ -10,17 +10,16 @@ See also: [`BoundaryOperator`](@ref), [`LazyTensors.inflate`](@ref). """ -function normal_derivative(grid, closure_stencil, boundary) - direction = dim(boundary) - h_inv = inverse_spacing(grid)[direction] - - op = BoundaryOperator(restrict(grid, dim(boundary)), scale(closure_stencil,h_inv), region(boundary)) - return LazyTensors.inflate(op, size(grid), dim(boundary)) +#TODO: Check docstring +function normal_derivative(g::TensorGrid, stencil_set::StencilSet, boundary::TensorGridBoundary) + op = normal_derivative(g.grids[grid_id(boundary)], stencil_set, boundary_id(boundary)) + return LazyTensors.inflate(op, size(g), grid_id(boundary)) end -""" - normal_derivative(grid, stencil_set, boundary) +function normal_derivative(g::EquidistantGrid, stencil_set::StencilSet, boundary) + closure_stencil = parse_stencil(stencil_set["d1"]["closure"]) + h_inv = inverse_spacing(g) -Creates a `normal_derivative` operator on `grid` given a `stencil_set`. -""" -normal_derivative(grid, stencil_set::StencilSet, boundary) = normal_derivative(grid, parse_stencil(stencil_set["d1"]["closure"]), boundary) + scaled_stencil = scale(closure_stencil,h_inv) + return BoundaryOperator(g, scaled_stencil, boundary) +end
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Mon Feb 27 15:39:13 2023 +0100 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Wed Mar 01 08:28:14 2023 +0100 @@ -7,24 +7,23 @@ import Sbplib.SbpOperators.BoundaryOperator @testset "normal_derivative" begin - g_1D = EquidistantGrid(11, 0.0, 1.0) - g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) + g_1D = equidistant_grid(11, 0.0, 1.0) + g_2D = equidistant_grid((11,12), (0.0, 0.0), (1.0,1.0)) @testset "normal_derivative" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_closure = parse_stencil(stencil_set["d1"]["closure"]) @testset "1D" begin - d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) - @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) + d_l = normal_derivative(g_1D, stencil_set, Lower()) + @test d_l == normal_derivative(g_1D, stencil_set, Lower()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa LazyTensor{T,0,1} where T end @testset "2D" begin - d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) - d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) + d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) + d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) Ix = IdentityTensor{Float64}((size(g_2D)[1],)) Iy = IdentityTensor{Float64}((size(g_2D)[2],)) - d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) - d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) + d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) + d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @@ -33,14 +32,13 @@ end end @testset "Accuracy" begin - v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) - v∂x = evalOn(g_2D, (x,y)-> 2*x + y) - v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) + v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = eval_on(g_2D, (x,y)-> 2*x + y) + v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) - d_closure = parse_stencil(stencil_set["d1"]["closure"]) - d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @@ -50,8 +48,7 @@ @testset "4th order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_closure = parse_stencil(stencil_set["d1"]["closure"]) - d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13