Mercurial > repos > public > sbplib_julia
changeset 681:43cf58c69f91 feature/boundary_quads
Remove methods boundary_quadrature, and instead specialize quadrature on a zero-dimensional grid to return the IdentityMapping
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 08 Feb 2021 18:44:44 +0100 |
parents | 1d3e29ffc6c6 |
children | 3ed922e95a35 |
files | src/SbpOperators/volumeops/quadratures/quadrature.jl test/testSbpOperators.jl |
diffstat | 2 files changed, 13 insertions(+), 74 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/quadratures/quadrature.jl Mon Feb 08 18:43:38 2021 +0100 +++ b/src/SbpOperators/volumeops/quadratures/quadrature.jl Mon Feb 08 18:44:44 2021 +0100 @@ -12,9 +12,10 @@ On a one-dimensional `grid`, `H` is a `VolumeOperator`. On a multi-dimensional `grid`, `H` is the outer product of the 1-dimensional quadrature operators in each coordinate direction. Also see the documentation of -`SbpOperators.volume_operator(...)` for more details. +`SbpOperators.volume_operator(...)` for more details. On 0-dimensional `grid`, +`H` is a 0-dimensional `IdentityMapping`. """ -function quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) where Dim +function quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) h = spacing(grid) H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1) for i ∈ 2:dimension(grid) @@ -25,45 +26,11 @@ end export quadrature -function quadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T}}) where {M,T} +quadrature(grid::EquidistantGrid{0,T}, inner_stencil, closure_stencils) where T = IdentityMapping{T}() +#TODO: Consider changing the interface of volume_operator to volume_operator(grid,closure_stencils,inner_stencil) +# in order to allow for having quadrature(grid, closure_stencils, inner_stencil = CenteredStencil(one(T))) +# Then the below function can be removed. +function quadrature(grid::EquidistantGrid{Dim,T}, closure_stencils) where {Dim,T} inner_stencil = CenteredStencil(one(T)) return quadrature(grid, inner_stencil, closure_stencils) end - -""" - boundary_quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils, id::CartesianBoundary) - boundary_quadrature(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, id) - boundary_quadrature(grid::EquidistantGrid, closure_stencils, id) - -Creates the lower-dimensional quadrature operator associated with the boundary -of `grid` specified by `id`. The quadrature operator is defined on the grid -spanned by the dimensions orthogonal to the boundary coordinate direction. -If the dimension of `grid` is 1, then the boundary quadrature is the 0-dimensional -`IdentityMapping`. If `inner_stencil` is omitted a central interior stencil with -weight 1 is used. -""" -function boundary_quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils, id::CartesianBoundary) - return quadrature(orthogonal_grid(grid,dim(id)),inner_stencil,closure_stencils) -end -export boundary_quadrature - -function boundary_quadrature(grid::EquidistantGrid{1}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, id::CartesianBoundary{1}) where {M,T} - return IdentityMapping{T}() -end - -function boundary_quadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T}}, id::CartesianBoundary) where {M,T} - inner_stencil = CenteredStencil(one(T)) - return boundary_quadrature(grid,inner_stencil,closure_stencils,id) -end - -""" - orthogonal_grid(grid,dim) - -Creates the lower-dimensional restriciton of `grid` spanned by the dimensions -orthogonal to `dim`. -""" -function orthogonal_grid(grid,dim) - dims = collect(1:dimension(grid)) - orth_dims = dims[dims .!= dim] - return restrict(grid,orth_dims) -end
--- a/test/testSbpOperators.jl Mon Feb 08 18:43:38 2021 +0100 +++ b/test/testSbpOperators.jl Mon Feb 08 18:44:44 2021 +0100 @@ -403,6 +403,11 @@ integral(H,v) = sum(H*v) @testset "quadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "0D" begin + H = quadrature(EquidistantGrid((),(),()),op.quadratureClosure) + @test H == IdentityMapping{Float64}() + @test H isa TensorMapping{T,0,0} where T + end @testset "1D" begin H = quadrature(g_1D,op.quadratureClosure) inner_stencil = CenteredStencil(1.) @@ -418,39 +423,6 @@ end end - @testset "boundary_quadrature" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - @testset "1D" begin - (id_l, id_r) = boundary_identifiers(g_1D) - @test boundary_quadrature(g_1D,op.quadratureClosure,id_l) == IdentityMapping{Float64}() - @test boundary_quadrature(g_1D,op.quadratureClosure,id_r) == IdentityMapping{Float64}() - - end - @testset "2D" begin - (id_w, id_e, id_s, id_n) = boundary_identifiers(g_2D) - H_x = quadrature(restrict(g_2D,1),op.quadratureClosure) - H_y = quadrature(restrict(g_2D,2),op.quadratureClosure) - @test boundary_quadrature(g_2D,op.quadratureClosure,id_w) == H_y - @test boundary_quadrature(g_2D,op.quadratureClosure,id_e) == H_y - @test boundary_quadrature(g_2D,op.quadratureClosure,id_s) == H_x - @test boundary_quadrature(g_2D,op.quadratureClosure,id_n) == H_x - end - @testset "3D" begin - (id_w, id_e, - id_s, id_n, - id_t, id_b) = boundary_identifiers(g_3D) - H_xy = quadrature(restrict(g_3D,[1,2]),op.quadratureClosure) - H_xz = quadrature(restrict(g_3D,[1,3]),op.quadratureClosure) - H_yz = quadrature(restrict(g_3D,[2,3]),op.quadratureClosure) - @test boundary_quadrature(g_3D,op.quadratureClosure,id_w) == H_yz - @test boundary_quadrature(g_3D,op.quadratureClosure,id_e) == H_yz - @test boundary_quadrature(g_3D,op.quadratureClosure,id_s) == H_xz - @test boundary_quadrature(g_3D,op.quadratureClosure,id_n) == H_xz - @test boundary_quadrature(g_3D,op.quadratureClosure,id_t) == H_xy - @test boundary_quadrature(g_3D,op.quadratureClosure,id_b) == H_xy - end - end - @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin