Mercurial > repos > public > sbplib_julia
changeset 1660:6d196fb85133 feature/sbp_operators/laplace_curvilinear
Merge feature/grids/curvilinear
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 28 Jun 2024 17:04:05 +0200 |
parents | cc9d18a5ff2d (diff) 3bbcd496e021 (current diff) |
children | bdb4becac704 |
files | src/Grids/Grids.jl src/Grids/mapped_grid.jl test/Grids/mapped_grid_test.jl |
diffstat | 21 files changed, 731 insertions(+), 48 deletions(-) [+] |
line wrap: on
line diff
--- a/Manifest.toml Fri Jun 28 17:02:47 2024 +0200 +++ b/Manifest.toml Fri Jun 28 17:04:05 2024 +0200 @@ -2,7 +2,7 @@ julia_version = "1.10.4" manifest_format = "2.0" -project_hash = "a36735c53cfa4453f39635046eeaa47a4ea1231b" +project_hash = "32fac879810099260f177c27318d3f26de4a00cc" [[deps.Adapt]] deps = ["LinearAlgebra", "Requires"]
--- a/Project.toml Fri Jun 28 17:02:47 2024 +0200 +++ b/Project.toml Fri Jun 28 17:04:05 2024 +0200 @@ -4,9 +4,18 @@ version = "0.1.1" [deps] +LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" TOML = "fa267f1f-6049-4f14-aa54-33bafae1ed76" TiledIteration = "06e1c1a7-607b-532d-9fad-de7d9aa2abac" +[weakdeps] +Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" + +[extensions] +SbplibMakieExt = "Makie" +SbplibPlotsExt = "Plots" + [compat] julia = "1.5"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ext/SbplibMakieExt.jl Fri Jun 28 17:04:05 2024 +0200 @@ -0,0 +1,91 @@ +module SbplibMakieExt + +using Sbplib.Grids +using Makie +using StaticArrays + + +function verticies_and_faces_and_values(g::Grid{<:Any,2}, gf::AbstractArray{<:Any, 2}) + ps = map(Tuple, g)[:] + values = gf[:] + + N = length(ps) + + faces = Vector{NTuple{3,Int}}() + + n,m = size(g) + Li = LinearIndices((1:n, 1:m)) + for i ∈ 1:n-1, j = 1:m-1 + + # Add point in the middle of the patch to preserve symmetries + push!(ps, Tuple((g[i,j] + g[i+1,j] + g[i+1,j+1] + g[i,j+1])/4)) + push!(values, (gf[i,j] + gf[i+1,j] + gf[i+1,j+1] + gf[i,j+1])/4) + + push!(faces, (Li[i,j], Li[i+1,j], length(ps))) + push!(faces, (Li[i+1,j], Li[i+1,j+1], length(ps))) + push!(faces, (Li[i+1,j+1], Li[i,j+1], length(ps))) + push!(faces, (Li[i,j+1], Li[i,j], length(ps))) + end + + verticies = permutedims(reinterpret(reshape,eltype(eltype(ps)), ps)) + faces = permutedims(reinterpret(reshape,Int, faces)) + + return verticies, faces, values +end + + +## Grids + +Makie.convert_arguments(::Type{<:Scatter}, g::Grid) = (reshape(map(Point,g),:),) # (map(Point,collect(g)[:]),) +function Makie.convert_arguments(::Type{<:Lines}, g::Grid{<:Any,2}) + M = collect(g) + + function cat_with_NaN(a,b) + vcat(a,[@SVector[NaN,NaN]],b) + end + + xlines = reduce(cat_with_NaN, eachrow(M)) + ylines = reduce(cat_with_NaN, eachcol(M)) + + return (cat_with_NaN(xlines,ylines),) +end + +Makie.plot!(plot::Plot(Grid{<:Any,2})) = lines!(plot, plot.attributes, plot[1]) + + +## Grid functions + +### 1D +function Makie.convert_arguments(::Type{<:Lines}, g::Grid{<:Any,1}, gf::AbstractArray{<:Any, 1}) + (collect(g), gf) +end + +function Makie.convert_arguments(::Type{<:Scatter}, g::Grid{<:Any,1}, gf::AbstractArray{<:Any, 1}) + (collect(g), gf) +end + +Makie.plot!(plot::Plot(Grid{<:Any,1}, AbstractArray{<:Any,1})) = lines!(plot, plot.attributes, plot[1], plot[2]) + +### 2D +function Makie.convert_arguments(::Type{<:Surface}, g::Grid{<:Any,2}, gf::AbstractArray{<:Any, 2}) + (getindex.(g,1), getindex.(g,2), gf) +end + +function Makie.plot!(plot::Plot(Grid{<:Any,2},AbstractArray{<:Any, 2})) + r = @lift verticies_and_faces_and_values($(plot[1]), $(plot[2])) + v,f,c = (@lift $r[1]), (@lift $r[2]), (@lift $r[3]) + mesh!(plot, plot.attributes, v, f; + color=c, + shading = NoShading, + ) +end +# TBD: Can we define `mesh` instead of the above function and then forward plot! to that? + +function Makie.convert_arguments(::Type{<:Scatter}, g::Grid{<:Any,2}, gf::AbstractArray{<:Any, 2}) + ps = map(g,gf) do (x,y), z + @SVector[x,y,z] + end + (reshape(ps,:),) +end + +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ext/SbplibPlotsExt.jl Fri Jun 28 17:04:05 2024 +0200 @@ -0,0 +1,72 @@ +module SbplibPlotsExt + +using Sbplib.Grids +using Plots + +@recipe f(::Type{<:Grid}, g::Grid) = map(Tuple,g)[:] + +@recipe function f(c::Chart{2,<:Rectangle}, n=5, m=n; draw_border=true, bordercolor=1) + Ξ = parameterspace(c) + ξs = range(limits(Ξ,1)..., n) + ηs = range(limits(Ξ,2)..., m) + + label := false + seriescolor --> 2 + for ξ ∈ ξs + @series adapted_curve_grid(η->c((ξ,η)),limits(Ξ,1)) + end + + for η ∈ ηs + @series adapted_curve_grid(ξ->c((ξ,η)),limits(Ξ,2)) + end + + if ~draw_border + return + end + + for ξ ∈ limits(Ξ,1) + @series begin + linewidth --> 3 + seriescolor := bordercolor + adapted_curve_grid(η->c((ξ,η)),limits(Ξ,1)) + end + end + + for η ∈ limits(Ξ,2) + @series begin + linewidth --> 3 + seriescolor := bordercolor + adapted_curve_grid(ξ->c((ξ,η)),limits(Ξ,2)) + end + end +end + +function adapted_curve_grid(g, minmax) + t1, _ = PlotUtils.adapted_grid(t->g(t)[1], minmax) + t2, _ = PlotUtils.adapted_grid(t->g(t)[2], minmax) + + ts = sort(vcat(t1,t2)) + + x = map(ts) do t + g(t)[1] + end + y = map(ts) do t + g(t)[2] + end + + return x, y +end + +# get_axis_limits(plt, :x) + + +# ReicpesPipline/src/user_recipe.jl +# @recipe function f(f::FuncOrFuncs{F}) where {F<:Function} + +# @recipe function f(f::Function, xmin::Number, xmax::Number) + +# _scaled_adapted_grid(f, xscale, yscale, xmin, xmax) + +end + +
--- a/src/Grids/Grids.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/Grids/Grids.jl Fri Jun 28 17:04:05 2024 +0200 @@ -4,6 +4,31 @@ using Sbplib.RegionIndices using Sbplib.LazyTensors using StaticArrays +using LinearAlgebra + +export ParameterSpace +export HyperBox +export Simplex +export Interval +export Rectangle +export Box +export Triangle +export Tetrahedron + +export limits +export unitinterval +export unitsquare +export unitcube +export unithyperbox + +export verticies +export unittriangle +export unittetrahedron +export unitsimplex + +export Chart +export ConcreteChart +export parameterspace # Grid export Grid @@ -45,6 +70,7 @@ abstract type BoundaryIdentifier end +include("manifolds.jl") include("grid.jl") include("tensor_grid.jl") include("equidistant_grid.jl")
--- a/src/Grids/equidistant_grid.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/Grids/equidistant_grid.jl Fri Jun 28 17:04:05 2024 +0200 @@ -130,6 +130,20 @@ return EquidistantGrid(range(limit_lower, limit_upper, length=size)) # TBD: Should it use LinRange instead? end + +equidistant_grid(hb::HyperBox, dims::Vararg{Int}) = equidistant_grid(hb.a, hb.b, dims...) +# TODO: One dimensional grids shouldn't have vector eltype right?, Change here or in HyperBox? + +function equidistant_grid(c::Chart, dims::Vararg{Int}) + lg = equidistant_grid(parameterspace(c), dims...) + return MappedGrid( + lg, + map(c,lg), + map(ξ->jacobian(c, ξ), lg), + ) +end + + CartesianBoundary{D,BID} = TensorGridBoundary{D,BID} # TBD: What should we do about the naming of this boundary?
--- a/src/Grids/grid.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/Grids/grid.jl Fri Jun 28 17:04:05 2024 +0200 @@ -107,6 +107,8 @@ """ function boundary_identifiers end +# TBD: Boundary identifiers for charts and atlases? + """ boundary_grid(g::Grid, id::BoundaryIdentifier)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Grids/manifolds.jl Fri Jun 28 17:04:05 2024 +0200 @@ -0,0 +1,207 @@ +""" + ParameterSpace{D} + +A space of parameters of dimension `D`. Used with `Chart` to indicate which +parameters are valid for that chart. + +Common parameter spaces are created using the functions unit sized spaces +* `unitinterval` +* `unitrectangle` +* `unitbox` +* `unittriangle` +* `unittetrahedron` +* `unithyperbox` +* `unitsimplex` + +See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref), +[`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref), +[`Simplex`](@ref), +""" +abstract type ParameterSpace{D} end +Base.ndims(::ParameterSpace{D}) where D = D +# TBD: Should implement domain_dim? + +struct HyperBox{T,D} <: ParameterSpace{D} + a::SVector{D,T} + b::SVector{D,T} +end + +function HyperBox(a,b) + T = SVector{length(a)} + HyperBox(convert(T,a), convert(T,b)) +end + +Interval{T} = HyperBox{T,1} +Rectangle{T} = HyperBox{T,2} +Box{T} = HyperBox{T,3} + +limits(box::HyperBox, d) = (box.a[d], box.b[d]) +limits(box::HyperBox) = (box.a, box.b) + +unitinterval(T=Float64) = unithyperbox(T,1) +unitsquare(T=Float64) = unithyperbox(T,2) +unitcube(T=Float64) = unithyperbox(T,3) +unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D))) +unithyperbox(D) = unithyperbox(Float64,D) + + +struct Simplex{T,D,NV} <: ParameterSpace{D} + verticies::NTuple{NV,SVector{D,T}} +end + +Simplex(verticies::Vararg{AbstractArray}) = Simplex(Tuple(SVector(v...) for v ∈ verticies)) + +verticies(s::Simplex) = s.verticies + +Triangle{T} = Simplex{T,2} +Tetrahedron{T} = Simplex{T,3} + +unittriangle(T=Float64) = unitsimplex(T,2) +unittetrahedron(T=Float64) = unitsimplex(T,3) +function unitsimplex(T,D) + z = @SVector zeros(T,D) + unitelement = one(eltype(z)) + verticies = ntuple(i->setindex(z, unitelement, i), D) + return Simplex((z,verticies...)) +end +unitsimplex(D) = unitsimplex(Float64, D) + +""" + Chart{D} + +A parametrized description of a manifold or part of a manifold. +""" +struct Chart{D, PST<:ParameterSpace{D}, MT} + mapping::MT + parameterspace::PST +end + +domain_dim(::Chart{D}) where D = D +(c::Chart)(ξ) = c.mapping(ξ) +parameterspace(c::Chart) = c.parameterspace + +""" + jacobian(c::Chart, ξ) + +The jacobian of the mapping evaluated at `ξ`. This defers to the +implementation of `jacobian` for the mapping itself. If no implementation is +available one can easily be specified for either the mapping function or the +chart itself. +```julia +c = Chart(f, ps) +jacobian(f::typeof(f), ξ) = f′(ξ) +``` +or +```julia +c = Chart(f, ps) +jacobian(c::typeof(c),ξ) = f′(ξ) +``` +which will both allow calling `jacobian(c,ξ)`. +""" +jacobian(c::Chart, ξ) = jacobian(c.mapping, ξ) +# TBD: Can we register a error hint for when jacobian is called with a function that doesn't have a registered jacobian? + + +# TBD: Should Charts, parameterspaces have boundary names? + +""" + Atlas + +A collection of charts and their connections. +Should implement methods for `charts` and +""" +abstract type Atlas end + +""" + charts(::Atlas) + +The colloction of charts in the atlas. +""" +function charts end + +""" + connections + +TBD: What exactly should this return? + +""" + +struct CartesianAtlas <: Atlas + charts::Matrix{Chart} +end + +charts(a::CartesianAtlas) = a.charts + +struct UnstructuredAtlas <: Atlas + charts::Vector{Chart} + connections +end + +charts(a::UnstructuredAtlas) = a.charts + + +### +# Geometry +### + +abstract type Curve end +abstract type Surface end + + +struct Line{PT} <: Curve + p::PT + tangent::PT +end + +(c::Line)(s) = c.p + s*c.tangent + + +struct LineSegment{PT} <: Curve + a::PT + b::PT +end + +(c::LineSegment)(s) = (1-s)*c.a + s*c.b + + +function linesegments(ps...) + return [LineSegment(ps[i], ps[i+1]) for i ∈ 1:length(ps)-1] +end + + +function polygon_edges(ps...) + n = length(ps) + return [LineSegment(ps[i], ps[mod1(i+1,n)]) for i ∈ eachindex(Ps)] +end + +struct Circle{T,PT} <: Curve + c::PT + r::T +end + +(c::Circle)(θ) = c.c + r*@SVector[cos(Θ), sin(Θ)] + +struct TransfiniteInterpolationSurface{T1,T2,T3,T4} <: Surface + c₁::T1 + c₂::T2 + c₃::T3 + c₄::T4 +end + +function (s::TransfiniteInterpolationSurface)(u,v) + c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄ + P₀₀ = c₁(0) + P₁₀ = c₂(0) + P₁₁ = c₃(0) + P₀₁ = c₄(0) + return (1-v)*c₁(u) + u*c₂(v) + v*c₃(1-u) + (1-u)*c₄(1-v) - ( + (1-u)*(1-v)*P₀₀ + u*(1-v)*P₁₀ + u*v*P₁₁ + (1-u)*v*P₀₁ + ) +end + +function (s::TransfiniteInterpolationSurface)(ξ̄::AbstractArray) + s(ξ̄...) +end + +# TODO: Implement jacobian() for the different mapping helpers +
--- a/src/Grids/mapped_grid.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/Grids/mapped_grid.jl Fri Jun 28 17:04:05 2024 +0200 @@ -62,6 +62,7 @@ ) end + function jacobian_determinant(g::MappedGrid) return map(jacobian(g)) do ∂x∂ξ det(∂x∂ξ)
--- a/src/SbpOperators/boundaryops/boundary_restriction.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/SbpOperators/boundaryops/boundary_restriction.jl Fri Jun 28 17:04:05 2024 +0200 @@ -25,3 +25,7 @@ converted_stencil = convert(Stencil{eltype(g)}, closure_stencil) return BoundaryOperator(g, converted_stencil, boundary) end + +function boundary_restriction(g::MappedGrid, stencil_set::StencilSet, boundary) + return boundary_restriction(logicalgrid(g), stencil_set, boundary) +end
--- a/src/SbpOperators/boundaryops/normal_derivative.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/SbpOperators/boundaryops/normal_derivative.jl Fri Jun 28 17:04:05 2024 +0200 @@ -28,3 +28,30 @@ scaled_stencil = scale(closure_stencil,h_inv) return BoundaryOperator(g, scaled_stencil, boundary) end + +function normal_derivative(g::MappedGrid, stencil_set::StencilSet, boundary) + k = grid_id(boundary) + b_indices = boundary_indices(g, boundary) + + # Compute the weights for the logical derivatives + g⁻¹ = geometric_tensor_inverse(g) + α = map(CartesianIndices(g⁻¹)[b_indices...]) do I # TODO: Fix iterator here + gᵏⁱ = g⁻¹[I][k,:] + gᵏᵏ = g⁻¹[I][k,k] + + gᵏⁱ./sqrt(gᵏᵏ) + end + + # Assemble difference operator + mapreduce(+,1:ndims(g)) do i + if i == k + ∂_ξᵢ = normal_derivative(logicalgrid(g), stencil_set, boundary) + else + e = boundary_restriction(logicalgrid(g), stencil_set, boundary) + ∂_ξᵢ = e ∘ first_derivative(logicalgrid(g), stencil_set, i) + end + + αᵢ = componentview(α,i) + DiagonalTensor(αᵢ) ∘ ∂_ξᵢ + end +end
--- a/src/SbpOperators/volumeops/inner_products/inner_product.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/SbpOperators/volumeops/inner_products/inner_product.jl Fri Jun 28 17:04:05 2024 +0200 @@ -50,3 +50,8 @@ """ inner_product(g::ZeroDimGrid, stencil_set::StencilSet) = IdentityTensor{component_type(g)}() + +function inner_product(g::MappedGrid, stencil_set) + J = jacobian_determinant(g) + DiagonalTensor(J)∘inner_product(logicalgrid(g), stencil_set) +end
--- a/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Fri Jun 28 17:04:05 2024 +0200 @@ -49,3 +49,8 @@ Implemented to simplify 1D code for SBP operators. """ inverse_inner_product(g::ZeroDimGrid, stencil_set::StencilSet) = IdentityTensor{component_type(g)}() + +function inverse_inner_product(g::MappedGrid, stencil_set) + J⁻¹ = map(inv, jacobian_determinant(g)) + DiagonalTensor(J⁻¹)∘inner_product(logicalgrid(g), stencil_set) +end
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Fri Jun 28 17:04:05 2024 +0200 @@ -51,8 +51,31 @@ end return Δ end + laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) +function laplace(grid::MappedGrid, stencil_set) + J = jacobian_determinant(grid) + J⁻¹ = DiagonalTensor(map(inv, J)) + + Jg = map(*, J, geometric_tensor_inverse(grid)) + lg = logicalgrid(grid) + + return mapreduce(+, CartesianIndices(first(Jg))) do I + i, j = I[1], I[2] + Jgⁱʲ = componentview(Jg, i, j) + + if i == j + J⁻¹∘second_derivative_variable(lg, Jgⁱʲ, stencil_set, i) + else + Dᵢ = first_derivative(lg, stencil_set, i) + Dⱼ = first_derivative(lg, stencil_set, j) + J⁻¹∘Dᵢ∘DiagonalTensor(Jgⁱʲ)∘Dⱼ + end + end +end + + """ sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning)
--- a/test/Grids/equidistant_grid_test.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/test/Grids/equidistant_grid_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -2,6 +2,7 @@ using Test using Sbplib.RegionIndices using Sbplib.LazyTensors +using StaticArrays @testset "EquidistantGrid" begin @@ -145,6 +146,23 @@ @test [gp[i]...] ≈ [p[i]...] atol=5e-13 end end + + + @testset "equidistant_grid(::ParameterSpace)" begin + ps = HyperBox((0,0),(2,1)) + + @test equidistant_grid(ps, 3,4) == equidistant_grid((0,0), (2,1), 3,4) + end + + + @testset "equidistant_grid(::Chart)" begin + c = Chart(unitsquare()) do (ξ,η) + @SVector[2ξ, 3η] + end + Grids.jacobian(c::typeof(c), ξ̄) = @SMatrix[2 0; 0 3] + + @test equidistant_grid(c, 5, 4) isa Grid + end end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/Grids/manifolds_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -0,0 +1,63 @@ +using Test + +using Sbplib.Grids +using Sbplib.RegionIndices +using Sbplib.LazyTensors + +# using StaticArrays + +@testset "ParameterSpace" begin + @test ndims(HyperBox([1,1], [2,2])) == 2 + @test ndims(unittetrahedron()) == 3 +end + +@testset "HyperBox" begin + @test HyperBox{<:Any, 2} <: ParameterSpace{2} + @test HyperBox([1,1], [2,2]) isa HyperBox{Int, 2} + + @test limits(HyperBox([1,2], [3,4])) == ([1,2], [3,4]) + @test limits(HyperBox([1,2], [3,4]), 1) == (1,3) + @test limits(HyperBox([1,2], [3,4]), 2) == (2,4) + + @test unitinterval() isa HyperBox{Float64,1} + @test limits(unitinterval()) == ([0], [1]) + + @test unitinterval(Int) isa HyperBox{Int,1} + @test limits(unitinterval(Int)) == ([0], [1]) + + @test unitsquare() isa HyperBox{Float64,2} + @test limits(unitsquare()) == ([0,0],[1,1]) + + @test unitcube() isa HyperBox{Float64,3} + @test limits(unitcube()) == ([0,0,0],[1,1,1]) + + @test unithyperbox(4) isa HyperBox{Float64,4} + @test limits(unithyperbox(4)) == ([0,0,0,0],[1,1,1,1]) +end + +@testset "Simplex" begin + @test Simplex{<:Any, 3} <: ParameterSpace{3} + @test Simplex([1,2], [3,4]) isa Simplex{Int, 2} + @test Simplex([1,2,3], [4,5,6],[1,1,1]) isa Simplex{Int, 3} + + @test verticies(Simplex([1,2], [3,4])) == ([1,2], [3,4]) + + @test unittriangle() isa Simplex{Float64,2} + @test verticies(unittriangle()) == ([0,0], [1,0], [0,1]) + + @test unittetrahedron() isa Simplex{Float64,3} + @test verticies(unittetrahedron()) == ([0,0,0], [1,0,0], [0,1,0],[0,0,1]) + + @test unitsimplex(4) isa Simplex{Float64,4} +end + +@testset "Chart" begin + c = Chart(x->2x, unitsquare()) + @test c isa Chart{2} + @test c([3,2]) == [6,4] + @test parameterspace(c) == unitsquare() +end + +@testset "Atlas" begin + +end
--- a/test/SbpOperators/boundaryops/boundary_restriction_test.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/test/SbpOperators/boundaryops/boundary_restriction_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -6,6 +6,8 @@ using Sbplib.RegionIndices using Sbplib.SbpOperators: BoundaryOperator, Stencil +using StaticArrays + @testset "boundary_restriction" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 4) e_closure = parse_stencil(stencil_set["e"]["closure"]) @@ -33,7 +35,7 @@ end @testset "Application" begin - @testset "1D" begin + @testset "EquidistantGrid" begin e_l, e_r = boundary_restriction.(Ref(g_1D), Ref(stencil_set), boundary_identifiers(g_1D)) v = eval_on(g_1D,x->1+x^2) u = fill(3.124) @@ -43,7 +45,7 @@ @test (e_r*v)[1] == v[end] end - @testset "2D" begin + @testset "TensorGrid" begin e_w, e_e, e_s, e_n = boundary_restriction.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) v = rand(11, 15) u = fill(3.124) @@ -53,5 +55,22 @@ @test e_s*v == v[:,1] @test e_n*v == v[:,end] end + + @testset "MappedGrid" begin + c = Chart(unitsquare()) do (ξ,η) + @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + end + Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] + + mg = equidistant_grid(c, 10,13) + + e_w, e_e, e_s, e_n = boundary_restriction.(Ref(mg), Ref(stencil_set), boundary_identifiers(mg)) + v = rand(10, 13) + + @test e_w*v == v[1,:] + @test e_e*v == v[end,:] + @test e_s*v == v[:,1] + @test e_n*v == v[:,end] + end end end
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -6,54 +6,99 @@ using Sbplib.RegionIndices import Sbplib.SbpOperators.BoundaryOperator +using StaticArrays + @testset "normal_derivative" begin - g_1D = equidistant_grid(0.0, 1.0, 11) - g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) - @testset "normal_derivative" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - @testset "1D" begin - d_l = normal_derivative(g_1D, stencil_set, Lower()) - @test d_l == normal_derivative(g_1D, stencil_set, Lower()) - @test d_l isa BoundaryOperator{T,Lower} where T - @test d_l isa LazyTensor{T,0,1} where T - end - @testset "2D" begin - d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) - d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) - Ix = IdentityTensor{Float64}((size(g_2D)[1],)) - Iy = IdentityTensor{Float64}((size(g_2D)[2],)) - d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) - d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) - @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) - @test d_w == d_l⊗Iy - @test d_n == Ix⊗d_r - @test d_w isa LazyTensor{T,1,2} where T - @test d_n isa LazyTensor{T,1,2} where T + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + + @testset "EquidistantGrid" begin + g_1D = equidistant_grid(0.0, 1.0, 11) + + d_l = normal_derivative(g_1D, stencil_set, Lower()) + @test d_l == normal_derivative(g_1D, stencil_set, Lower()) + @test d_l isa BoundaryOperator{T,Lower} where T + @test d_l isa LazyTensor{T,0,1} where T + end + + @testset "TensorGrid" begin + g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) + d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) + d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) + Ix = IdentityTensor{Float64}((size(g_2D)[1],)) + Iy = IdentityTensor{Float64}((size(g_2D)[2],)) + d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) + d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) + @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) + @test d_w == d_l⊗Iy + @test d_n == Ix⊗d_r + @test d_w isa LazyTensor{T,1,2} where T + @test d_n isa LazyTensor{T,1,2} where T + + @testset "Accuracy" begin + v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = eval_on(g_2D, (x,y)-> 2*x + y) + v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) + # TODO: Test for higher order polynomials? + @testset "2nd order" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) + + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 + end + + @testset "4th order" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) + + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 + end end end - @testset "Accuracy" begin - v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) - v∂x = eval_on(g_2D, (x,y)-> 2*x + y) - v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) - # TODO: Test for higher order polynomials? - @testset "2nd order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) - d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) + + @testset "MappedGrid" begin + c = Chart(unitsquare()) do (ξ,η) + @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + end + Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] + + mg = equidistant_grid(c, 10,13) + + b_w, b_e, b_s, b_n = boundary_identifiers(mg) + + @test_broken normal_derivative(mg, stencil_set, b_w) isa LazyTensor{<:Any, 1, 2} + @test_broken normal_derivative(mg, stencil_set, b_e) isa LazyTensor{<:Any, 1, 2} + @test_broken normal_derivative(mg, stencil_set, b_s) isa LazyTensor{<:Any, 1, 2} + @test_broken normal_derivative(mg, stencil_set, b_n) isa LazyTensor{<:Any, 1, 2} + + @testset "Accuracy" begin + v = map(x̄ -> NaN, mg) + dₙv = map(x̄ -> NaN, mg) - @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ v∂y[:,end] atol = 1e-13 - end + @testset "2nd order" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(mg), Ref(stencil_set), boundary_identifiers(mg)) + + @test_broken d_w*v ≈ dₙv atol = 1e-13 + @test_broken d_e*v ≈ dₙv atol = 1e-13 + @test_broken d_s*v ≈ dₙv atol = 1e-13 + @test_broken d_n*v ≈ dₙv atol = 1e-13 + end - @testset "4th order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) - - @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ v∂y[:,end] atol = 1e-13 + @testset "4th order" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(mg), Ref(stencil_set), boundary_identifiers(mg)) + + @test_broken d_w*v ≈ dₙv atol = 1e-13 + @test_broken d_e*v ≈ dₙv atol = 1e-13 + @test_broken d_s*v ≈ dₙv atol = 1e-13 + @test_broken d_n*v ≈ dₙv atol = 1e-13 + end end end end
--- a/test/SbpOperators/volumeops/inner_products/inner_product_test.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/test/SbpOperators/volumeops/inner_products/inner_product_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -6,6 +6,8 @@ import Sbplib.SbpOperators.ConstantInteriorScalingOperator +using StaticArrays + @testset "Diagonal-stencil inner_product" begin Lx = π/2. Ly = Float64(π) @@ -94,4 +96,17 @@ end end end + + @testset "MappedGrid" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + c = Chart(unitsquare()) do (ξ,η) + @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + end + Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] + + mg = equidistant_grid(c, 10,13) + + @test inner_product(mg, stencil_set) isa LazyTensor{<:Any, 2,2} + @test_broken false # Test that it calculates the right thing + end end
--- a/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -6,6 +6,8 @@ import Sbplib.SbpOperators.ConstantInteriorScalingOperator +using StaticArrays + @testset "Diagonal-stencil inverse_inner_product" begin Lx = π/2. Ly = Float64(π) @@ -82,4 +84,17 @@ end end end + + @testset "MappedGrid" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + c = Chart(unitsquare()) do (ξ,η) + @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + end + Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] + + mg = equidistant_grid(c, 10,13) + + @test inverse_inner_product(mg, stencil_set) isa LazyTensor{<:Any, 2,2} + @test_broken false # Test that it calculates the right thing + end end
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl Fri Jun 28 17:02:47 2024 +0200 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Fri Jun 28 17:04:05 2024 +0200 @@ -4,6 +4,8 @@ using Sbplib.Grids using Sbplib.LazyTensors +using StaticArrays + @testset "Laplace" begin # Default stencils (4th order) operator_path = sbp_operators_path()*"standard_diagonal.toml" @@ -72,12 +74,12 @@ g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) - @testset "1D" begin + @testset "EquidistantGrid" begin Δ = laplace(g_1D, stencil_set) @test Δ == second_derivative(g_1D, stencil_set) @test Δ isa LazyTensor{Float64,1,1} end - @testset "3D" begin + @testset "TensorGrid" begin Δ = laplace(g_3D, stencil_set) @test Δ isa LazyTensor{Float64,3,3} Dxx = second_derivative(g_3D, stencil_set, 1) @@ -86,6 +88,26 @@ @test Δ == Dxx + Dyy + Dzz @test Δ isa LazyTensor{Float64,3,3} end + + @testset "MappedGrid" begin + c = Chart(unitsquare()) do (ξ,η) + @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + end + Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] + + g = equidistant_grid(c, 30,30) + + @test laplace(g, stencil_set) isa LazyTensor{<:Any,2,2} + + f((x,y)) = sin(4(x + y)) + Δf((x,y)) = -16sin(4(x + y)) + gf = map(f,g) + + Δ = laplace(g, stencil_set) + + @test collect(Δ*gf) isa Array{<:Any,2} + @test Δ*gf ≈ map(Δf, g) + end end @testset "sat_tensors" begin