Mercurial > repos > public > sbplib_julia
changeset 125:22642722a8ec cell_based_test
Merge
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 13 Feb 2019 11:03:39 +0100 |
parents | 5df4ccb19476 (current diff) 631eb9b35d72 (diff) |
children | 7c0b9bb7ab4d |
files | |
diffstat | 4 files changed, 36 insertions(+), 68 deletions(-) [+] |
line wrap: on
line diff
--- a/AbstractGrid.jl Wed Feb 13 10:58:57 2019 +0100 +++ b/AbstractGrid.jl Wed Feb 13 11:03:39 2019 +0100 @@ -1,10 +1,6 @@ abstract type AbstractGrid end -function numberOfDimensions(grid::AbstractGrid) - error("Not implemented for abstact type AbstractGrid") -end - -function numberOfPoints(grid::AbstractGrid) +function dimension(grid::AbstractGrid) error("Not implemented for abstact type AbstractGrid") end
--- a/EquidistantGrid.jl Wed Feb 13 10:58:57 2019 +0100 +++ b/EquidistantGrid.jl Wed Feb 13 11:03:39 2019 +0100 @@ -5,52 +5,30 @@ # the domain is defined as (-1,1)x(0,2). struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid - numberOfPointsPerDim::NTuple{Dim, Int} # First coordinate direction stored first, then - + size::NTuple{Dim, Int} # First coordinate direction stored first limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} + spacing::NTuple{Dim, T} # General constructor - function EquidistantGrid(nPointsPerDim::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T - @assert all(nPointsPerDim.>0) + function EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T + @assert all(size.>0) @assert all(limit_upper.-limit_lower .!= 0) - return new{Dim,T}(nPointsPerDim, limit_lower, limit_upper) + spacing = abs.(limit_upper.-limit_lower)./(size.-1) + return new{Dim,T}(size, limit_lower, limit_upper, spacing) end - - # # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) - # function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) - # return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) - # end - end # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The number of dimensions -function numberOfDimensions(grid::EquidistantGrid) - return length(grid.numberOfPointsPerDim) -end - -# Computes the total number of points of an EquidistantGrid. -# -# @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The total number of points -function numberOfPoints(grid::EquidistantGrid) - return prod(grid.numberOfPointsPerDim) -end - -# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance -# between two points for each coordinate direction. -# -# @Input: grid - an EquidistantGrid -# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. -function spacings(grid::EquidistantGrid) - return abs.(grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) +# @Return: dimension - The dimension of the grid +function dimension(grid::EquidistantGrid) + return length(grid.size) end function Base.eachindex(grid::EquidistantGrid) - CartesianIndices(grid.numberOfPointsPerDim) + CartesianIndices(grid.size) end # Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered @@ -62,28 +40,12 @@ function points(grid::EquidistantGrid) # TODO: Make this return an abstract array? physical_domain_size = (grid.limit_upper .- grid.limit_lower) - indices = Tuple.(CartesianIndices(grid.numberOfPointsPerDim)) + indices = Tuple.(CartesianIndices(grid.size)) return broadcast(I -> grid.limit_lower .+ physical_domain_size.*(I.-1), indices) end function pointsalongdim(grid::EquidistantGrid, dim::Integer) - @assert dim<=numberOfDimensions(grid) + @assert dim<=dimension(grid) @assert dim>0 - points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.numberOfPointsPerDim[dim]) + points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.size[dim]) end - -using PyPlot, PyCall - -function plotgridfunction(grid::EquidistantGrid, gridfunction) - if numberOfDimensions(grid) == 1 - plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) - elseif numberOfDimensions(grid) == 2 - mx = grid.numberOfPointsPerDim[1] - my = grid.numberOfPointsPerDim[2] - X = repeat(pointsalongdim(grid,1),1,my) - Y = permutedims(repeat(pointsalongdim(grid,2),1,mx)) - plot_surface(X,Y,reshape(gridfunction,mx,my)); - else - error(string("Plot not implemented for dimension ", string(numberOfDimensions(grid)))) - end -end
--- a/diffOp.jl Wed Feb 13 10:58:57 2019 +0100 +++ b/diffOp.jl Wed Feb 13 11:03:39 2019 +0100 @@ -59,9 +59,7 @@ # Maybe this should be split according to b3fbef345810 after all?! Seems like it makes performance more predictable function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T - N = D.grid.numberOfPointsPerDim - closuresize = closureSize(D.op) - for I ∈ regionindices(N, closuresize, (r1,r2)) + for I ∈ regionindices(D.grid.size, closureSize(D.op), (r1,r2)) @inbounds indextuple = (Index{r1}(I[1]), Index{r2}(I[2])) @inbounds u[I] = apply(D, v, indextuple) end @@ -83,10 +81,7 @@ using TiledIteration function apply_region_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T - N = D.grid.numberOfPointsPerDim - closuresize = closureSize(D.op) - ri = regionindices(N, closuresize, (r1,r2)) - + ri = regionindices(D.grid.size, closureSize(D.op), (r1,r2)) for tileaxs ∈ TileIterator(axes(ri), padded_tilesize(T, (5,5), 2)) # TBD: Is this the right way, the right size? for j ∈ tileaxs[2], i ∈ tileaxs[1] I = ri[i,j] @@ -114,19 +109,17 @@ # u = L*v function apply(L::Laplace{1}, v::AbstractVector, i::Int) - h = Grid.spacings(L.grid)[1] - uᵢ = L.a * apply(L.op, h, v, i) + uᵢ = L.a * apply(L.op, L.grid.spacing[1], v, i) return uᵢ end function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} - h = Grid.spacings(L.grid) # 2nd x-derivative @inbounds vx = view(v, :, Int(I[2])) - @inbounds uᵢ = L.a*apply(L.op, h[1], vx , I[1]) + @inbounds uᵢ = L.a*apply(L.op, L.grid.spacing[1], vx , I[1]) # 2nd y-derivative @inbounds vy = view(v, Int(I[1]), :) - @inbounds uᵢ += L.a*apply(L.op, h[2], vy, I[2]) + @inbounds uᵢ += L.a*apply(L.op, L.grid.spacing[2], vy, I[2]) return uᵢ end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sbpPlot.jl Wed Feb 13 11:03:39 2019 +0100 @@ -0,0 +1,17 @@ +module sbpPlot +using PyPlot, PyCall + +function plotgridfunction(grid::EquidistantGrid, gridfunction) + if dimension(grid) == 1 + plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) + elseif dimension(grid) == 2 + mx = grid.size[1] + my = grid.size[2] + X = repeat(pointsalongdim(grid,1),1,my) + Y = permutedims(repeat(pointsalongdim(grid,2),1,mx)) + plot_surface(X,Y,reshape(gridfunction,mx,my)); + else + error(string("Plot not implemented for dimension ", string(dimension(grid)))) + end +end +end