Mercurial > repos > public > sbplib_julia
changeset 146:21b188f38358 parallel_test
Started branch for testing out parallel computing
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 25 Feb 2019 16:36:15 +0100 |
parents | 18b3c63673b3 |
children | aa18b7bf4926 |
files | distributedTest.jl |
diffstat | 1 files changed, 56 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/distributedTest.jl Mon Feb 25 16:36:15 2019 +0100 @@ -0,0 +1,56 @@ +@everywhere using Distributed +@everywhere using DistributedArrays + +# TODO: Currently uses integer division to calculate the local grid size. +# Should we make sure this is handled in some way if mod(sz./nworkers()) != 0 +# or keep assertions? +@everywhere function create_partitioned_grid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}, nworkers_per_dim::NTuple{Dim, Int}) where Dim where T + @assert mod.(size, nworkers_per_dim) == (0,0) + @assert prod(nworkers_per_dim) == nworkers() + # Translate the current worker id to a cartesian index, based on nworkers_per_dim + ci = CartesianIndices(nworkers_per_dim); + id = Tuple(ci[myid()-1]) + + # Compute the size of each partitioned grid + size_partition = size./nworkers_per_dim + size_partition = map(x->Int(x),size_partition) # TODO: Cant this be done in an easier way?... + # Compute domain size for each partition + domain_size = limit_upper.-limit_lower + domain_partition_size = domain_size./nworkers_per_dim + + # Compute the lower and upper limit for each grid partition, then construct the grid + ll_partition = limit_lower .+ domain_partition_size.*(id.-1) + lu_partition = limit_lower .+ domain_partition_size.*id + grid = sbp.Grid.EquidistantGrid(size_partition, ll_partition, lu_partition) + return grid +end + +# Create grid +gridsize = (10000, 10000); +limit_lower = (0., 0.) +limit_upper = (2pi, 3pi/2) +# TODO: Currently only works with same number of processes in each direction and for +# an even number of processes +nworkers_per_dim = (Int(nworkers()/2),Int(nworkers()/2)) +grids_partitioned = [@spawnat p create_partitioned_grid(gridsize, limit_lower , limit_upper, nworkers_per_dim) for p in workers()] + +# Create Laplace operator +@everywhere op = sbp.readOperator("d2_4th.txt","h_4th.txt") +Laplace_partitioned = [@spawnat p sbp.Laplace(fetch(grids_partitioned[p-1]), 1.0, op) for p in workers()] + +# Create initial value grid function v and solution grid function u +# TODO: u and v could be a distributed arrays from the start. +# Then pass local parts of the distributed arrays to the functions +@everywhere init(x,y) = sin(x) + sin(y) +v = [@spawnat p sbp.Grid.evalOn(fetch(grids_partitioned[p-1]), init) for p in workers()] +u = [@spawnat p zero(fetch(v[p-1])) for p in workers()] + +# # Apply Laplace +fetch([@spawnat p sbp.apply_tiled!(fetch(Laplace_partitioned[p-1]),fetch(u[p-1]), fetch(v[p-1])) for p in workers()]) + +# Construct global vector and store in distributed array +u = reshape(u,(2,2)) +u_global = DArray(u) +v = reshape(v,(2,2)) +v_global = DArray(v) +@show maximum(abs.(u_global + v_global))