Mercurial > repos > public > sbplib_julia
changeset 362:0d93d406c222 refactor/remove_dynamic_size_tensormapping
Rename field in quadrature struct and add some missing *
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 28 Sep 2020 22:46:23 +0200 |
parents | e73af120ad38 |
children | 33f04f398aac |
files | src/SbpOperators/quadrature/diagonal_inner_product.jl src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl |
diffstat | 2 files changed, 6 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/quadrature/diagonal_inner_product.jl Mon Sep 28 22:42:54 2020 +0200 +++ b/src/SbpOperators/quadrature/diagonal_inner_product.jl Mon Sep 28 22:46:23 2020 +0200 @@ -6,12 +6,12 @@ """ struct DiagonalInnerProduct{T,M} <: TensorMapping{T,1,1} h::T - closure::NTuple{M,T} + quadratureClosure::NTuple{M,T} size::Tuple{Int} end -function DiagonalInnerProduct(g::EquidistantGrid{1}, closure) - return DiagonalInnerProduct(spacing(g)[1], closure, size(g)) +function DiagonalInnerProduct(g::EquidistantGrid{1}, quadratureClosure) + return DiagonalInnerProduct(spacing(g)[1], quadratureClosure, size(g)) end LazyTensors.range_size(H::DiagonalInnerProduct) = H.size @@ -22,12 +22,12 @@ end function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] + return @inbounds H.h*H.quadratureClosure[Int(I)]*v[Int(I)] end function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, I::Index{Upper}) where T N = length(v); - return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] + return @inbounds H.h*H.quadratureClosure[N-Int(I)+1]*v[Int(I)] end function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T
--- a/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl Mon Sep 28 22:42:54 2020 +0200 +++ b/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl Mon Sep 28 22:46:23 2020 +0200 @@ -24,7 +24,7 @@ function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Upper}) where T N = length(v); - return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(I)+1]v[Int(I)] + return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(I)+1]*v[Int(I)] end function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T