changeset 638:08b2c7a2d063 feature/volume_and_boundary_operators

Implement the Quadrature operator as a VolumeOperator. Make DiagonalQuadrature a special case of the general Quadrature operator. Update tests.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 04 Jan 2021 09:32:11 +0100
parents 4a81812150f4
children bfb1adb2cd7e
files src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl src/SbpOperators/volumeops/quadratures/quadrature.jl test/testSbpOperators.jl
diffstat 3 files changed, 150 insertions(+), 211 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl	Sun Jan 03 18:15:14 2021 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,92 +0,0 @@
-"""
-diagonal_quadrature(g,quadrature_closure)
-
-Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
-a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while
-the multi-dimensional operator is the outer-product of the
-one-dimensional operators in each coordinate direction.
-"""
-function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
-    H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
-    for i ∈ 2:Dim
-        H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
-    end
-    return H
-end
-export diagonal_quadrature
-
-"""
-    DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
-
-Implements the one-dimensional diagonal quadrature operator as a `TensorMapping`
-The quadrature is defined by the quadrature interval length `h`, the quadrature
-closure weights `closure` and the number of quadrature intervals `size`. The
-interior stencil has the weight 1.
-"""
-struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
-    h::T
-    closure::NTuple{M,T}
-    size::Tuple{Int}
-end
-export DiagonalQuadrature
-
-"""
-    DiagonalQuadrature(g, quadrature_closure)
-
-Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with
-closure given by `quadrature_closure`.
-"""
-function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
-    return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
-end
-
-"""
-    range_size(H::DiagonalQuadrature)
-
-The size of an object in the range of `H`
-"""
-LazyTensors.range_size(H::DiagonalQuadrature) = H.size
-
-"""
-    domain_size(H::DiagonalQuadrature)
-
-The size of an object in the domain of `H`
-"""
-LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
-
-"""
-    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
-Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions
-`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
-be converted to an `Index{R}`.
-"""
-function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
-    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T
-    N = length(v); #TODO: Use dim_size here?
-    return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
-    return @inbounds H.h*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
-    N = length(v); #TODO: Use dim_size here?
-    r = getregion(i, closure_size(H), N)
-    return LazyTensors.apply(H, v, Index(i, r))
-end
-
-"""
-    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
-Implements the application (H'*v)[I]. The operator is self-adjoint.
-"""
-LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
-
-"""
-    closure_size(H)
-Returns the size of the closure stencil of a DiagonalQuadrature `H`.
-"""
-closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/quadratures/quadrature.jl	Mon Jan 04 09:32:11 2021 +0100
@@ -0,0 +1,36 @@
+"""
+    Quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils)
+
+Creates the quadrature operator `H` as a `TensorMapping`
+
+The quadrature approximates the integral operator on the grid using
+`inner_stencil` in the interior and a set of stencils `closure_stencils`
+for the points in the closure regions.
+
+On a one-dimensional `grid`, `H` is a `VolumeOperator`. On a multi-dimensional
+`grid`, `H` is the outer product of the 1-dimensional quadrature operators in
+each  coordinate direction. Also see the documentation of
+`SbpOperators.volume_operator(...)` for more details.
+"""
+function Quadrature(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim
+    h = spacing(grid)
+    H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1)
+    for i ∈ 2:Dim
+        Hᵢ = SbpOperators.volume_operator(grid, scale(inner_stencil,h[i]), scale.(closure_stencils,h[i]), even, i)
+        H = H∘Hᵢ
+    end
+    return H
+end
+export Quadrature
+
+"""
+    DiagonalQuadrature(grid::EquidistantGrid, closure_stencils)
+
+Creates the quadrature operator with the inner stencil 1/h and 1-element sized
+closure stencils (i.e the operator is diagonal)
+"""
+function DiagonalQuadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T,1}}) where {M,T}
+    inner_stencil = Stencil(Tuple{T}(1),center=1)
+    return Quadrature(grid, inner_stencil, closure_stencils)
+end
+export DiagonalQuadrature
--- a/test/testSbpOperators.jl	Sun Jan 03 18:15:14 2021 +0100
+++ b/test/testSbpOperators.jl	Mon Jan 04 09:32:11 2021 +0100
@@ -413,47 +413,51 @@
     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
     integral(H,v) = sum(H*v)
     @testset "Constructors" begin
-        # 1D
-        H_x = DiagonalQuadrature(spacing(g_1D)[1],op.quadratureClosure,size(g_1D));
-        @test H_x == DiagonalQuadrature(g_1D,op.quadratureClosure)
-        @test H_x == diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test H_x isa TensorMapping{T,1,1} where T
-        @test H_x' isa TensorMapping{T,1,1} where T
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test H_xy isa TensorMappingComposition
-        @test H_xy isa TensorMapping{T,2,2} where T
-        @test H_xy' isa TensorMapping{T,2,2} where T
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            inner_stencil = Stencil((spacing(g_1D)[1],),center=1)
+            H == Quadrature(g_1D,inner_stencil,op.quadratureClosure)
+            @test H isa TensorMapping{T,1,1} where T
+        end
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure)
+            H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure)
+            @test H == H_x⊗H_y
+            @test H isa TensorMapping{T,2,2} where T
+        end
     end
 
     @testset "Sizes" begin
-        # 1D
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test domain_size(H_x) == size(g_1D)
-        @test range_size(H_x) == size(g_1D)
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test domain_size(H_xy) == size(g_2D)
-        @test range_size(H_xy) == size(g_2D)
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            @test domain_size(H) == size(g_1D)
+            @test range_size(H) == size(g_1D)
+        end
+        @testset "2D" begin
+            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            @test domain_size(H) == size(g_2D)
+            @test range_size(H) == size(g_2D)
+        end
     end
 
     @testset "Application" begin
-        # 1D
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        a = 3.2
-        v_1D = a*ones(Float64, size(g_1D))
-        u_1D = evalOn(g_1D,x->sin(x))
-        @test integral(H_x,v_1D) ≈ a*Lx rtol = 1e-13
-        @test integral(H_x,u_1D) ≈ 1. rtol = 1e-8
-        @test H_x*v_1D == H_x'*v_1D
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        b = 2.1
-        v_2D = b*ones(Float64, size(g_2D))
-        u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
-        @test integral(H_xy,v_2D) ≈ b*Lx*Ly rtol = 1e-13
-        @test integral(H_xy,u_2D) ≈ π rtol = 1e-8
-        @test H_xy*v_2D ≈ H_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            a = 3.2
+            v_1D = a*ones(Float64, size(g_1D))
+            u_1D = evalOn(g_1D,x->sin(x))
+            @test integral(H,v_1D) ≈ a*Lx rtol = 1e-13
+            @test integral(H,u_1D) ≈ 1. rtol = 1e-8
+        end
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            b = 2.1
+            v_2D = b*ones(Float64, size(g_2D))
+            u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
+            @test integral(H,v_2D) ≈ b*Lx*Ly rtol = 1e-13
+            @test integral(H,u_2D) ≈ π rtol = 1e-8
+        end
     end
 
     @testset "Accuracy" begin
@@ -462,96 +466,87 @@
             f_i(x) = 1/factorial(i)*x^i
             v = (v...,evalOn(g_1D,f_i))
         end
-        # TODO: Bug in readOperator for 2nd order
-        # # 2nd order
-        # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-        # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure)
-        # for i = 1:3
-        #     @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14
-        # end
 
-        # 4th order
-        op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-        H4 = diagonal_quadrature(g_1D,op4.quadratureClosure)
-        for i = 1:4
-            @test integral(H4,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
+        @testset "2nd order" begin
+            op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            for i = 1:2
+                @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14
+            end
         end
-    end
 
-    @testset "Inferred" begin
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        v_1D = ones(Float64, size(g_1D))
-        v_2D = ones(Float64, size(g_2D))
-        @inferred H_x*v_1D
-        @inferred H_x'*v_1D
-        @inferred H_xy*v_2D
-        @inferred H_xy'*v_2D
+        @testset "4th order" begin
+            op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            for i = 1:4
+                @test integral(H,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
+            end
+        end
     end
 end
 
-@testset "InverseDiagonalQuadrature" begin
-    op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-    Lx = π/2.
-    Ly = Float64(π)
-    g_1D = EquidistantGrid(77, 0.0, Lx)
-    g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
-    @testset "Constructors" begin
-        # 1D
-        Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D));
-        @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
-        @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test Hi_x isa TensorMapping{T,1,1} where T
-        @test Hi_x' isa TensorMapping{T,1,1} where T
-
-        # 2D
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test Hi_xy isa TensorMappingComposition
-        @test Hi_xy isa TensorMapping{T,2,2} where T
-        @test Hi_xy' isa TensorMapping{T,2,2} where T
-    end
-
-    @testset "Sizes" begin
-        # 1D
-        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test domain_size(Hi_x) == size(g_1D)
-        @test range_size(Hi_x) == size(g_1D)
-        # 2D
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test domain_size(Hi_xy) == size(g_2D)
-        @test range_size(Hi_xy) == size(g_2D)
-    end
-
-    @testset "Application" begin
-        # 1D
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        v_1D = evalOn(g_1D,x->sin(x))
-        u_1D = evalOn(g_1D,x->x^3-x^2+1)
-        @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15
-        @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15
-        @test Hi_x*v_1D == Hi_x'*v_1D
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
-        u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
-        @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15
-        @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15
-        @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
-    end
-
-    @testset "Inferred" begin
-        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        v_1D = ones(Float64, size(g_1D))
-        v_2D = ones(Float64, size(g_2D))
-        @inferred Hi_x*v_1D
-        @inferred Hi_x'*v_1D
-        @inferred Hi_xy*v_2D
-        @inferred Hi_xy'*v_2D
-    end
-end
+# @testset "InverseDiagonalQuadrature" begin
+#     op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+#     Lx = π/2.
+#     Ly = Float64(π)
+#     g_1D = EquidistantGrid(77, 0.0, Lx)
+#     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+#     @testset "Constructors" begin
+#         # 1D
+#         Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D));
+#         @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
+#         @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         @test Hi_x isa TensorMapping{T,1,1} where T
+#         @test Hi_x' isa TensorMapping{T,1,1} where T
+#
+#         # 2D
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         @test Hi_xy isa TensorMappingComposition
+#         @test Hi_xy isa TensorMapping{T,2,2} where T
+#         @test Hi_xy' isa TensorMapping{T,2,2} where T
+#     end
+#
+#     @testset "Sizes" begin
+#         # 1D
+#         Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         @test domain_size(Hi_x) == size(g_1D)
+#         @test range_size(Hi_x) == size(g_1D)
+#         # 2D
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         @test domain_size(Hi_xy) == size(g_2D)
+#         @test range_size(Hi_xy) == size(g_2D)
+#     end
+#
+#     @testset "Application" begin
+#         # 1D
+#         H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
+#         Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         v_1D = evalOn(g_1D,x->sin(x))
+#         u_1D = evalOn(g_1D,x->x^3-x^2+1)
+#         @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15
+#         @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15
+#         @test Hi_x*v_1D == Hi_x'*v_1D
+#         # 2D
+#         H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
+#         u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
+#         @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15
+#         @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15
+#         @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
+#     end
+#
+#     @testset "Inferred" begin
+#         Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         v_1D = ones(Float64, size(g_1D))
+#         v_2D = ones(Float64, size(g_2D))
+#         @inferred Hi_x*v_1D
+#         @inferred Hi_x'*v_1D
+#         @inferred Hi_xy*v_2D
+#         @inferred Hi_xy'*v_2D
+#     end
+# end
 
 @testset "BoundaryOperator" begin
     closure_stencil = Stencil((0,2), (2.,1.,3.))