Mercurial > repos > public > sbplib_julia
view SbpOperators/src/BoundaryValue.jl @ 306:f8a4850caed2
Move BoundaryValue from Laplace to separate file. Currently WIP
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:06:27 +0200 |
parents | |
children |
line wrap: on
line source
""" BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} Implements the boundary operator `e` as a TensorMapping """ struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} eClosure::Stencil{T,M} bId::CartesianBoundary end export BoundaryValue # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? # Can we give special treatment to TensorMappings that go to a higher dim? function LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T if dim(e.bId) == 1 return (UnknownDim, domain_size[1]) elseif dim(e.bId) == 2 return (domain_size[1], UnknownDim) end end LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) # TODO: Make a nicer solution for 3-dim(e.bId) # TODO: Make this independent of dimension function LazyTensors.apply(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T i = I[dim(e.bId)] j = I[3-dim(e.bId)] N_i = size(e.grid)[dim(e.bId)] return apply_boundary_value(e.op, v[j], i, N_i, region(e.bId)) end function LazyTensors.apply_transpose(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T u = selectdim(v,3-dim(e.bId),Int(I[1])) return apply_boundary_value_transpose(e.op, u, region(e.bId)) end function apply_boundary_value_transpose(op::ConstantStencilOperator, v::AbstractVector, ::Type{Lower}) @boundscheck if length(v) < closuresize(op) throw(BoundsError()) end apply_stencil(op.eClosure,v,1) end function apply_boundary_value_transpose(op::ConstantStencilOperator, v::AbstractVector, ::Type{Upper}) @boundscheck if length(v) < closuresize(op) throw(BoundsError()) end apply_stencil_backwards(op.eClosure,v,length(v)) end export apply_boundary_value_transpose function apply_boundary_value(op::ConstantStencilOperator, v::Number, i::Index, N::Integer, ::Type{Lower}) @boundscheck if !(0<length(Int(i)) <= N) throw(BoundsError()) end op.eClosure[Int(i)-1]*v end function apply_boundary_value(op::ConstantStencilOperator, v::Number, i::Index, N::Integer, ::Type{Upper}) @boundscheck if !(0<length(Int(i)) <= N) throw(BoundsError()) end op.eClosure[N-Int(i)]*v end export apply_boundary_value """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} Implements the boundary operator `e` as a TensorMapping """ struct BoundaryValue{D,T,M,R} <: TensorMapping{T,D,1} e:BoundaryOperator{T,M,R} bId::CartesianBoundary end function LazyTensors.apply_transpose(bv::BoundaryValue{T,M,Lower}, v::AbstractVector{T}, i::Index) where T u = selectdim(v,3-dim(bv.bId),Int(I[1])) return apply_transpose(bv.e, u, I) end """ BoundaryOperator{T,N,R} <: TensorMapping{T,1,1} Implements the boundary operator `e` as a TensorMapping """ export BoundaryOperator struct BoundaryOperator{T,M,R<:Region} <: TensorMapping{T,1,1} closure::Stencil{T,M} end function LazyTensors.range_size(e::BoundaryOperator, domain_size::NTuple{1,Integer}) return UnknownDim end LazyTensors.domain_size(e::BoundaryOperator{T}, range_size::NTuple{1,Integer}) where T = range_size function LazyTensors.apply_transpose(e::BoundaryOperator{T,M,Lower}, v::AbstractVector{T}, i::Index{Lower}) where T @boundscheck if length(v) < closuresize(e) #TODO: Use domain_size here? throw(BoundsError()) end apply_stencil(e.closure,v,Int(i)) end function LazyTensors.apply_transpose(e::BoundaryOperator{T,M,Upper}}, v::AbstractVector{T}, i::Index{Upper}) where T @boundscheck if length(v) < closuresize(e) #TODO: Use domain_size here? throw(BoundsError()) end apply_stencil_backwards(e.closure,v,Int(i)) end function LazyTensors.apply_transpose(e::BoundaryOperator{T}, v::AbstractVector{T}, i::Index) where T @boundscheck if length(v) < closuresize(e) #TODO: Use domain_size here? throw(BoundsError()) end return eltype(v)(0) end #TODO: Implement apply in a meaningful way. Should it return a vector or a single value (perferable?) Should fit into the function LazyTensors.apply(e::BoundaryOperator, v::AbstractVector, i::Index) @boundscheck if !(0<length(Int(i)) <= length(v)) throw(BoundsError()) end return e.closure[Int(i)].*v end