Mercurial > repos > public > sbplib_julia
view test/LazyTensors/lazy_tensor_operations_test.jl @ 1893:ecec13fec21c
Added tag v0.1.4 for changeset b00eb94848ba
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 31 Jan 2025 10:56:16 +0100 |
parents | 471a948cd2b2 |
children | 368999a2e243 |
line wrap: on
line source
using Test using Diffinitive.LazyTensors using Diffinitive.RegionIndices using Tullio struct TransposableDummyMapping{T,R,D} <: LazyTensor{T,R,D} end LazyTensors.apply(m::TransposableDummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply LazyTensors.apply_transpose(m::TransposableDummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose LazyTensors.range_size(m::TransposableDummyMapping) = :range_size LazyTensors.domain_size(m::TransposableDummyMapping) = :domain_size struct SizeDoublingMapping{T,R,D} <: LazyTensor{T,R,D} domain_size::NTuple{D,Int} end LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size @testset "Mapping transpose" begin m = TransposableDummyMapping{Float64,2,3}() @test m' isa LazyTensor{Float64, 3,2} @test m'' == m @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply @test range_size(m') == :domain_size @test domain_size(m') == :range_size end @testset "TensorApplication" begin m = SizeDoublingMapping{Int, 1, 1}((3,)) mm = SizeDoublingMapping{Int, 1, 1}((6,)) v = [0,1,2] @test size(m*v) == 2 .*size(v) @test (m*v)[1] == (:apply,v,(1,)) @test (mm*m*v)[1] == (:apply,m*v,(1,)) @test (mm*m*v)[3] == (:apply,m*v,(3,)) @test (mm*m*v)[6] == (:apply,m*v,(6,)) @test_throws MethodError m*m @test (m*v)[CartesianIndex(2)] == (:apply,v,(2,)) @test (mm*m*v)[CartesianIndex(2)] == (:apply,m*v,(2,)) m = SizeDoublingMapping{Float64, 2, 2}((3,3)) mm = SizeDoublingMapping{Float64, 2, 2}((6,6)) v = ones(3,3) @test size(m*v) == 2 .*size(v) @test (m*v)[1,2] == (:apply,v,(1,2)) @test (m*v)[CartesianIndex(2,3)] == (:apply,v,(2,3)) @test (mm*m*v)[CartesianIndex(4,3)] == (:apply,m*v,(4,3)) m = ScalingTensor(2,(3,)) v = [1,2,3] @test m*v isa AbstractVector @test m*v == [2,4,6] m = ScalingTensor(2,(2,2)) v = [[1 2];[3 4]] @test m*v == [[2 4];[6 8]] @test (m*v)[2,1] == 6 @testset "Error on index out of bounds" begin m = SizeDoublingMapping{Int, 1, 1}((3,)) v = [0,1,2] @test_throws BoundsError (m*v)[0] @test_throws BoundsError (m*v)[7] end @testset "Error on unmatched dimensions" begin v = [0,1,2] m = SizeDoublingMapping{Int, 2, 1}((3,)) @test_throws MethodError m*ones(Int,2,2) @test_throws MethodError m*m*v end @testset "Error on unmatched sizes" begin @test_throws DomainSizeMismatch ScalingTensor(2,(2,))*ones(3) @test_throws DomainSizeMismatch ScalingTensor(2,(2,))*ScalingTensor(2,(3,))*ones(3) end @testset "Type calculation" begin m = ScalingTensor(2,(3,)) v = [1.,2.,3.] @test m*v isa AbstractVector{Float64} @test m*v == [2.,4.,6.] @inferred m*v @inferred (m*v)[1] m = ScalingTensor(2,(2,2)) v = [[1. 2.];[3. 4.]] @test m*v == [[2. 4.];[6. 8.]] @test (m*v)[2,1] == 6. @inferred m*v @inferred (m*v)[1] m = ScalingTensor(2. +2. *im,(3,)) v = [1.,2.,3.] @test m*v isa AbstractVector{ComplexF64} @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] @inferred m*v @inferred (m*v)[1] m = ScalingTensor(1,(3,)) v = [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] @test m*v isa AbstractVector{ComplexF64} @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] @inferred m*v @inferred (m*v)[1] m = ScalingTensor(2., (3,)) v = [[1,2,3], [3,2,1],[1,3,1]] @test m*v isa AbstractVector{Vector{Float64}} @test m*v == [[2.,4.,6.], [6.,4.,2.],[2.,6.,2.]] @inferred m*v @inferred (m*v)[1] end end @testset "LazyTensor binary operations" begin A = ScalingTensor(2.0, (3,)) B = ScalingTensor(3.0, (3,)) v = [1.1,1.2,1.3] for i ∈ eachindex(v) @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] end for i ∈ eachindex(v) @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] end @test range_size(A+B) == range_size(A) == range_size(B) @test domain_size(A+B) == domain_size(A) == domain_size(B) @test ((A+B)*ComplexF64[1.1,1.2,1.3])[3] isa ComplexF64 @testset "Error on unmatched sizes" begin @test_throws Union{DomainSizeMismatch, RangeSizeMismatch} ScalingTensor(2.0, (3,)) + ScalingTensor(2.0, (4,)) @test_throws DomainSizeMismatch ScalingTensor(2.0, (4,)) + SizeDoublingMapping{Float64,1,1}((2,)) @test_throws DomainSizeMismatch SizeDoublingMapping{Float64,1,1}((2,)) + ScalingTensor(2.0, (4,)) @test_throws RangeSizeMismatch ScalingTensor(2.0, (2,)) + SizeDoublingMapping{Float64,1,1}((2,)) @test_throws RangeSizeMismatch SizeDoublingMapping{Float64,1,1}((2,)) + ScalingTensor(2.0, (2,)) end end @testset "TensorComposition" begin A = rand(2,3) B = rand(3,4) Ã = DenseTensor(A, (1,), (2,)) B̃ = DenseTensor(B, (1,), (2,)) @test Ã∘B̃ isa TensorComposition @test range_size(Ã∘B̃) == (2,) @test domain_size(Ã∘B̃) == (4,) @test_throws DomainSizeMismatch B̃∘Ã # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) v = rand(4) @test Ã∘B̃*v ≈ A*B*v rtol=1e-14 v = rand(2) @test (Ã∘B̃)'*v ≈ B'*A'*v rtol=1e-14 @test (Ã∘B̃*ComplexF64[1.,2.,3.,4.])[1] isa ComplexF64 @test ((Ã∘B̃)'*ComplexF64[1.,2.])[1] isa ComplexF64 a = 2. v = rand(3) @test a*Ã isa TensorComposition @test a*Ã == Ã*a @test range_size(a*Ã) == range_size(Ã) @test domain_size(a*Ã) == domain_size(Ã) @test a*Ã*v ≈ a.*A*v rtol=1e-14 end @testset "InflatedTensor" begin I(sz...) = IdentityTensor(sz...) Ã = rand(4,2) B̃ = rand(4,2,3) C̃ = rand(4,2,3) A = DenseTensor(Ã,(1,),(2,)) B = DenseTensor(B̃,(1,2),(3,)) C = DenseTensor(C̃,(1,),(2,3)) @testset "Constructors" begin @test InflatedTensor(I(3,2), A, I(4)) isa LazyTensor{Float64, 4, 4} @test InflatedTensor(I(3,2), B, I(4)) isa LazyTensor{Float64, 5, 4} @test InflatedTensor(I(3), C, I(2,3)) isa LazyTensor{Float64, 4, 5} @test InflatedTensor(C, I(2,3)) isa LazyTensor{Float64, 3, 4} @test InflatedTensor(I(3), C) isa LazyTensor{Float64, 2, 3} @test InflatedTensor(I(3), I(2,3)) isa LazyTensor{Float64, 3, 3} end @testset "Range and domain size" begin @test range_size(InflatedTensor(I(3,2), A, I(4))) == (3,2,4,4) @test domain_size(InflatedTensor(I(3,2), A, I(4))) == (3,2,2,4) @test range_size(InflatedTensor(I(3,2), B, I(4))) == (3,2,4,2,4) @test domain_size(InflatedTensor(I(3,2), B, I(4))) == (3,2,3,4) @test range_size(InflatedTensor(I(3), C, I(2,3))) == (3,4,2,3) @test domain_size(InflatedTensor(I(3), C, I(2,3))) == (3,2,3,2,3) @inferred range_size(InflatedTensor(I(3,2), A, I(4))) == (3,2,4,4) @inferred domain_size(InflatedTensor(I(3,2), A, I(4))) == (3,2,2,4) end @testset "Application" begin # Testing regular application and transposed application with inflation "before", "after" and "before and after". # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. cases = [ ( InflatedTensor(I(3,2), A, I(4)), (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose ), ( InflatedTensor(I(3,2), B, I(4)), (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), ), ( InflatedTensor(I(3,2), C, I(4)), (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), ), ( InflatedTensor(I(3,2), A), (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), ), ( InflatedTensor(I(3,2), B), (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), ), ( InflatedTensor(I(3,2), C), (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), ), ( InflatedTensor(A,I(4)), (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), ), ( InflatedTensor(B,I(4)), (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), ), ( InflatedTensor(C,I(4)), (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), ), ] @testset "$tm" for (tm, true_apply, true_apply_transpose) ∈ cases v = rand(domain_size(tm)...) @test tm*v ≈ true_apply(v) rtol=1e-14 v = rand(range_size(tm)...) @test tm'*v ≈ true_apply_transpose(v) rtol=1e-14 end @testset "application to other type" begin tm = InflatedTensor(I(3,2), A, I(4)) v = rand(ComplexF64, domain_size(tm)...) @test (tm*v)[1,2,3,1] isa ComplexF64 v = rand(ComplexF64, domain_size(tm')...) @test (tm'*v)[1,2,2,1] isa ComplexF64 end @testset "Inference of application" begin tm = InflatedTensor(I(2,3),ScalingTensor(2.0, (3,2)),I(3,4)) v = rand(domain_size(tm)...) @inferred apply(tm,v,1,2,3,2,2,4) @inferred (tm*v)[1,2,3,2,2,4] end end @testset "InflatedTensor of InflatedTensor" begin A = ScalingTensor(2.0,(2,3)) itm = InflatedTensor(I(3,2), A, I(4)) @test InflatedTensor(I(4), itm, I(2)) == InflatedTensor(I(4,3,2), A, I(4,2)) @test InflatedTensor(itm, I(2)) == InflatedTensor(I(3,2), A, I(4,2)) @test InflatedTensor(I(4), itm) == InflatedTensor(I(4,3,2), A, I(4)) @test InflatedTensor(I(2), I(2), I(2)) isa InflatedTensor # The constructor should always return its type. end end @testset "LazyOuterProduct" begin A = ScalingTensor(2.0, (5,)) B = ScalingTensor(3.0, (3,)) C = ScalingTensor(5.0, (3,2)) AB = LazyOuterProduct(A,B) @test AB isa LazyTensor{T,2,2} where T @test range_size(AB) == (5,3) @test domain_size(AB) == (5,3) v = rand(range_size(AB)...) @test AB*v == 6*v ABC = LazyOuterProduct(A,B,C) @test ABC isa LazyTensor{T,4,4} where T @test range_size(ABC) == (5,3,3,2) @test domain_size(ABC) == (5,3,3,2) @test A⊗B == AB @test A⊗B⊗C == ABC A = rand(3,2) B = rand(2,4,3) v₁ = rand(2,4,3) v₂ = rand(4,3,2) Ã = DenseTensor(A,(1,),(2,)) B̃ = DenseTensor(B,(1,),(2,3)) ÃB̃ = LazyOuterProduct(Ã,B̃) @tullio ABv[i,k] := A[i,j]*B[k,l,m]*v₁[j,l,m] @test ÃB̃*v₁ ≈ ABv B̃Ã = LazyOuterProduct(B̃,Ã) @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] @test B̃Ã*v₂ ≈ BAv @testset "Indentity mapping arguments" begin @test LazyOuterProduct(IdentityTensor(3,2), IdentityTensor(1,2)) == IdentityTensor(3,2,1,2) Ã = DenseTensor(A,(1,),(2,)) @test LazyOuterProduct(IdentityTensor(3,2), Ã) == InflatedTensor(IdentityTensor(3,2),Ã) @test LazyOuterProduct(Ã, IdentityTensor(3,2)) == InflatedTensor(Ã,IdentityTensor(3,2)) I1 = IdentityTensor(3,2) I2 = IdentityTensor(4) @test I1⊗Ã⊗I2 == InflatedTensor(I1, Ã, I2) end end @testset "inflate" begin I = LazyTensors.inflate(IdentityTensor(),(3,4,5,6), 2) @test I isa LazyTensor{Float64, 3,3} @test range_size(I) == (3,5,6) @test domain_size(I) == (3,5,6) @test LazyTensors.inflate(ScalingTensor(1., (4,)),(3,4,5,6), 1) == InflatedTensor(IdentityTensor{Float64}(),ScalingTensor(1., (4,)),IdentityTensor(4,5,6)) @test LazyTensors.inflate(ScalingTensor(2., (1,)),(3,4,5,6), 2) == InflatedTensor(IdentityTensor(3),ScalingTensor(2., (1,)),IdentityTensor(5,6)) @test LazyTensors.inflate(ScalingTensor(3., (6,)),(3,4,5,6), 4) == InflatedTensor(IdentityTensor(3,4,5),ScalingTensor(3., (6,)),IdentityTensor{Float64}()) @test_throws BoundsError LazyTensors.inflate(ScalingTensor(1., (4,)),(3,4,5,6), 0) @test_throws BoundsError LazyTensors.inflate(ScalingTensor(1., (4,)),(3,4,5,6), 5) end