Mercurial > repos > public > sbplib_julia
view src/SbpOperators/laplace/secondderivative.jl @ 361:e73af120ad38 refactor/remove_dynamic_size_tensormapping
Remove apply_transpose methods from second derivatives
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 28 Sep 2020 22:42:54 +0200 |
parents | 0844069ab5ff |
children | 81053b1992b6 |
line wrap: on
line source
""" SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} Implements the Laplace tensor operator `L` with constant grid spacing and coefficients in 1D dimension """ struct SecondDerivative{T,N,M,K} <: TensorMapping{T,1,1} h_inv::T # The grid spacing could be included in the stencil already. Preferable? innerStencil::Stencil{T,N} closureStencils::NTuple{M,Stencil{T,K}} parity::Parity size::NTuple{1,Int} end export SecondDerivative function SecondDerivative(grid::EquidistantGrid{1}, innerStencil, closureStencils) h_inv = grid.inverse_spacing[1] return SecondDerivative(h_inv, innerStencil, closureStencils, even, size(grid)) end LazyTensors.range_size(D2::SecondDerivative) = D2.size LazyTensors.domain_size(D2::SecondDerivative) = D2.size #TODO: The 1D tensor mappings should not have to dispatch on 1D tuples if we write LazyTensor.apply for vararg right?!?! # Currently have to index the Tuple{Index} in each method in order to call the stencil methods which is ugly. # I thought I::Vararg{Index,R} fell back to just Index for R = 1 # Apply for different regions Lower/Interior/Upper or Unknown region function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) end function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) end function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) return @inbounds D2.h_inv*D2.h_inv*Int(D2.parity)*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) end function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v) # TODO: Use domain_size here instead? r = getregion(Int(index), closuresize(D2), N) I = Index(Int(index), r) return LazyTensors.apply(D2, v, I) end closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M