Mercurial > repos > public > sbplib_julia
view src/Grids/parameter_space.jl @ 1904:e54fed6a9ada feature/grids/parameter_spaces
Improve documentation for ParameterSpace
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 01 Feb 2025 22:24:56 +0100 |
parents | f93ba5832146 |
children | 238ef43fe92a |
line wrap: on
line source
""" ParameterSpace{D} A space of parameters of dimension `D`. Common parameter spaces are created using functions for unit sized spaces * [`unitinterval`](@ref) * [`unitsquare`](@ref) * [`unitcube`](@ref) * [`unithyperbox`](@ref) * [`unittriangle`](@ref) * [`unittetrahedron`](@ref) * [`unitsimplex`](@ref) See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref), [`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref), [`Simplex`](@ref), """ abstract type ParameterSpace{D} end Base.ndims(::ParameterSpace{D}) where D = D struct Interval{T} <: ParameterSpace{1} a::T b::T function Interval(a,b) a, b = promote(a, b) new{typeof(a)}(a,b) end end limits(i::Interval) = (i.a, i.b) unitinterval(T=Float64) = Interval(zero(T), one(T)) struct HyperBox{T,D} <: ParameterSpace{D} a::SVector{D,T} b::SVector{D,T} end function HyperBox(a,b) ET = promote_type(eltype(a),eltype(b)) T = SVector{length(a),ET} HyperBox(convert(T,a), convert(T,b)) end Rectangle{T} = HyperBox{T,2} Box{T} = HyperBox{T,3} limits(box::HyperBox, d) = (box.a[d], box.b[d]) limits(box::HyperBox) = (box.a, box.b) unitsquare(T=Float64) = unithyperbox(T,2) unitcube(T=Float64) = unithyperbox(T,3) unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D))) unithyperbox(D) = unithyperbox(Float64,D) struct Simplex{T,D,NV} <: ParameterSpace{D} verticies::NTuple{NV,SVector{D,T}} Simplex(verticies::Tuple{SVector{D,T}, Vararg{SVector{D,T},N}}) where {T,D,N} = new{T,D,N+1}(verticies) Simplex(::Tuple{}) = throw(ArgumentError("Must provide at least one vertex.")) end function Simplex(verticies::Vararg{AbstractArray}) ET = mapreduce(eltype,promote_type,verticies) T = SVector{length(verticies[1]),ET} return Simplex(Tuple(convert(T,v) for v ∈ verticies)) end verticies(s::Simplex) = s.verticies Triangle{T} = Simplex{T,2} Tetrahedron{T} = Simplex{T,3} unittriangle(T=Float64) = unitsimplex(T,2) unittetrahedron(T=Float64) = unitsimplex(T,3) function unitsimplex(T,D) z = @SVector zeros(T,D) unitelement = one(eltype(z)) verticies = ntuple(i->setindex(z, unitelement, i), D) return Simplex((z,verticies...)) end unitsimplex(D) = unitsimplex(Float64, D)