Mercurial > repos > public > sbplib_julia
view src/LazyTensors/LazyTensors.jl @ 1948:dd77b45ee1ac feature/grids/manifolds
Add some docstrings
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 07 Feb 2025 22:37:55 +0100 |
parents | e1077273eda5 |
children |
line wrap: on
line source
module LazyTensors export LazyTensor export apply export apply_transpose export range_dim, domain_dim export range_size, domain_size export TensorApplication export TensorTranspose export TensorComposition export TensorNegation export TensorSum export IdentityTensor export ScalingTensor export DiagonalTensor export DenseTensor export InflatedTensor export LazyOuterProduct export ⊗ export DomainSizeMismatch export RangeSizeMismatch export LazyArray export LazyFunctionArray export +̃, -̃, *̃, /̃ include("lazy_tensor.jl") include("tensor_types.jl") include("lazy_array.jl") include("lazy_tensor_operations.jl") include("tuple_manipulation.jl") # Applying lazy tensors to vectors Base.:*(a::LazyTensor, v::AbstractArray) = TensorApplication(a,v) Base.:*(a::LazyTensor, b::LazyTensor) = throw(MethodError(Base.:*,(a,b))) Base.:*(a::LazyTensor, args::Union{LazyTensor, AbstractArray}...) = foldr(*,(a,args...)) # Addition and subtraction of lazy tensors Base.:+(ts::LazyTensor...) = TensorSum(ts...) Base.:-(t::LazyTensor) = TensorNegation(t) Base.:-(s::LazyTensor, t::LazyTensor) = s + (-t) ## Specializations to flatten the nesting of tensors. This helps Julia during inference. Base.:+(t::TensorSum, s::TensorSum) = TensorSum(t.tms..., s.tms...) Base.:+(t::TensorSum, s::LazyTensor) = TensorSum(t.tms..., s) Base.:+(t::LazyTensor, s::TensorSum) = TensorSum(t, s.tms...) # Composing lazy tensors Base.:∘(s::LazyTensor, t::LazyTensor) = TensorComposition(s,t) Base.:∘(s::TensorComposition, t::LazyTensor) = s.t1∘(s.t2∘t) # Outer products of tensors ⊗(a::LazyTensor, b::LazyTensor) = LazyOuterProduct(a,b) end # module