Mercurial > repos > public > sbplib_julia
view test/SbpOperators/boundary_conditions/boundary_condition_test.jl @ 1996:d89f7a1a6f37 feature/grids/manifolds
Add some notation to the docs page
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 23 Apr 2025 09:02:20 +0200 |
parents | 471a948cd2b2 |
children |
line wrap: on
line source
using Test using Diffinitive.Grids using Diffinitive.RegionIndices using Diffinitive.SbpOperators @testset "BoundaryCondition" begin grid_1d = equidistant_grid(0.0, 1.0, 11) grid_2d = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 15) grid_3d = equidistant_grid((0.0, 0.0, 0.0), (1.0,1.0, 1.0), 11, 15, 13) (id_l,_) = boundary_identifiers(grid_1d) (_,_,_,id_n) = boundary_identifiers(grid_2d) (_,_,_,_,id_b,_) = boundary_identifiers(grid_3d) g = 3.14 f(x,y,z) = x^2+y^2+z^2 @testset "Constructors" begin @test DirichletCondition(g,id_l) isa DirichletCondition{Float64,LowerBoundary} @test NeumannCondition(f,id_b) isa NeumannCondition{<:Function,CartesianBoundary{3,LowerBoundary}} end @testset "boundary" begin @test boundary(DirichletCondition(g,id_l)) == id_l @test boundary(NeumannCondition(f,id_b)) == id_b end @testset "boundary_data" begin @test boundary_data(DirichletCondition(g,id_l)) == g @test boundary_data(NeumannCondition(f,id_b)) == f end @testset "discretize_data" begin @test fill(g) ≈ discretize_data(grid_1d,DirichletCondition(g,id_l)) @test g*ones(11,1) ≈ discretize_data(grid_2d,DirichletCondition(g,id_n)) X = repeat(0:1/10:1, inner = (1,15)) Y = repeat(0:1/14:1, outer = (1,11)) @test map((x,y)->f(x,y,0), X,Y') ≈ discretize_data(grid_3d,NeumannCondition(f,id_b)) end end