view LazyTensors/test/runtests.jl @ 257:d4cd4882ee9f boundary_conditions

Improve error messages when multiblying with TensorMappings and add some tests for TensorOperators
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 28 Jun 2019 14:10:35 +0200
parents 1c6afdcfd657
children b577b5f64530
line wrap: on
line source

using Test
using LazyTensors

@testset "Generic Mapping methods" begin
    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Int}) where {T,R,D} = :apply
    @test range_dim(DummyMapping{Int,2,3}()) == 2
    @test domain_dim(DummyMapping{Int,2,3}()) == 3
    @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(0,0)) == :apply
end

@testset "Generic Operator methods" begin
    struct DummyOperator{T,D} <: TensorOperator{T,D} end
    @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5)
    @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1)
end

@testset "Mapping transpose" begin
    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end

    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Int}) where {T,R,D} = :apply
    LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i::NTuple{D,Int}) where {T,R,D} = :apply_transpose

    LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size
    LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size

    m = DummyMapping{Float64,2,3}()
    @test m' isa TensorMapping{Float64, 3,2}
    @test m'' == m
    @test apply(m',zeros(Float64,(0,0)), (0,0,0)) == :apply_transpose
    @test apply(m'',zeros(Float64,(0,0,0)),(0,0)) == :apply
    @test apply_transpose(m', zeros(Float64,(0,0,0)),(0,0)) == :apply

    @test range_size(m', (0,0)) == :domain_size
    @test domain_size(m', (0,0,0)) == :range_size
end

@testset "TensorApplication" begin
    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end

    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Int}) where {T,R,D} = (:apply,v,i)
    LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i::NTuple{D,Int}) where {T,R,D} = :apply_transpose

    LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size
    LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2


    m = DummyMapping{Int, 1, 1}()
    v = [0,1,2]
    @test m*v isa AbstractVector{Int}
    @test size(m*v) == 2 .*size(v)
    @test (m*v)[0] == (:apply,v,(0,))
    @test m*m*v isa AbstractVector{Int}
    @test (m*m*v)[1] == (:apply,m*v,(1,))
    @test (m*m*v)[3] == (:apply,m*v,(3,))
    @test (m*m*v)[6] == (:apply,m*v,(6,))
    @test_broken BoundsError == (m*m*v)[0]
    @test_broken BoundsError == (m*m*v)[7]

    A = DummyMapping{Int, 2, 1}()

    @test_throws MethodError A*ones(Int,2,2)
    @test_throws MethodError A*A*v

    struct ScalingOperator{T,D} <: TensorOperator{T,D}
        λ::T
    end

    LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Tuple{Int}) where {T,D} = m.λ*v[I...]

    A = ScalingOperator{Int,1}(2)

    @test A*[1,2,3] isa AbstractVector
    @test A*[1,2,3] == [2,4,6]
end

@testset "TensorMapping binary operations" begin
    struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D}
        λ::T
    end

    LazyTensors.apply(m::ScalarMapping{T,R,D}, v, i) where {T,R,D} = m.λ*v[i]
    LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size
    LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes

    A = ScalarMapping{Float64,1,1}(2.0)
    B = ScalarMapping{Float64,1,1}(3.0)

    v = [1.1,1.2,1.3]

    for i ∈ eachindex(v)
        @test ((A+B)*v)[i] == 2*v[i] + 3*v[i]
    end

    for i ∈ eachindex(v)
        @test ((A-B)*v)[i] == 2*v[i] - 3*v[i]
    end

    @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,))
    @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,))
end

@testset "LazyArray" begin
    struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D}
        data::T1
    end
    Base.size(v::DummyArray) = size(v.data)
    Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...]

    # Test lazy operations
    v1 = [1, 2.3, 4]
    v2 = [1., 2, 3]
    r_add = v1 .+ v2
    r_sub = v1 .- v2
    r_times = v1 .* v2
    r_div = v1 ./ v2
    @test isa(v1 +̃ v2, LazyArray)
    @test isa(v1 -̃ v2, LazyArray)
    @test isa(v1 *̃ v2, LazyArray)
    @test isa(v1 /̃ v2, LazyArray)
    for i ∈ eachindex(v1)
        @test (v1 +̃ v2)[i] == r_add[i]
        @test (v1 -̃ v2)[i] == r_sub[i]
        @test (v1 *̃ v2)[i] == r_times[i]
        @test (v1 /̃ v2)[i] == r_div[i]
    end
    @test_throws BoundsError (v1 +̃  v2)[4]
    v2 = [1., 2, 3, 4]
    # Test that size of arrays is asserted when not specified inbounds
    @test_throws DimensionMismatch v1 +̃ v2

    # Test operations on LazyArray
    v1 = DummyArray([1, 2.3, 4])
    v2 = [1., 2, 3]
    @test isa(v1 + v2, LazyArray)
    @test isa(v2 + v1, LazyArray)
    @test isa(v1 - v2, LazyArray)
    @test isa(v2 - v1, LazyArray)
    for i ∈ eachindex(v2)
        @test (v1 + v2)[i] == (v2 + v1)[i] == r_add[i]
        @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub[i]
    end
    @test_throws BoundsError (v1 + v2)[4]
    v2 = [1., 2, 3, 4]
    # Test that size of arrays is asserted when not specified inbounds
    @test_throws DimensionMismatch v1 + v2
end