Mercurial > repos > public > sbplib_julia
view SbpOperators/src/d2.jl @ 263:b577b5f64530 boundary_conditions
Add lazy elementwise operations for array with scalar
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 04 Dec 2019 19:02:18 +0100 |
parents | f89718833620 |
children | ccef055233a2 |
line wrap: on
line source
export D2, closuresize, readOperator, apply_e, apply_d, apply_e_T, apply_d_T @enum Parity begin odd = -1 even = 1 end struct D2{T,N,M,K} <: ConstantStencilOperator quadratureClosure::NTuple{M,T} inverseQuadratureClosure::NTuple{M,T} innerStencil::Stencil{T,N} closureStencils::NTuple{M,Stencil{T,K}} eClosure::Stencil{T,M} dClosure::Stencil{T,M} parity::Parity end function closuresize(D::D2)::Int return length(D.quadratureClosure) end # TODO: Dispatch on Index{R}? apply_quadrature(op::D2{T}, h::Real, v::T, i::Integer, N::Integer, ::Type{Lower}) where T = v*h*op.quadratureClosure[i] apply_quadrature(op::D2{T}, h::Real, v::T, i::Integer, N::Integer, ::Type{Upper}) where T = v*h*op.quadratureClosure[N-i+1] apply_quadrature(op::D2{T}, h::Real, v::T, i::Integer, N::Integer, ::Type{Interior}) where T = v*h # TODO: Avoid branching in inner loops function apply_quadrature(op::D2{T}, h::Real, v::T, i::Integer, N::Integer) where T r = getregion(i, closuresize(op), N) return apply_quadrature(op, h, v, i, N, r) end export apply_quadrature # TODO: Dispatch on Index{R}? apply_inverse_quadrature(op::D2{T}, h_inv::Real, v::T, i::Integer, N::Integer, ::Type{Lower}) where T = v*h_inv*op.inverseQuadratureClosure[i] apply_inverse_quadrature(op::D2{T}, h_inv::Real, v::T, i::Integer, N::Integer, ::Type{Upper}) where T = v*h_inv*op.inverseQuadratureClosure[N-i+1] apply_inverse_quadrature(op::D2{T}, h_inv::Real, v::T, i::Integer, N::Integer, ::Type{Interior}) where T = v*h_inv # TODO: Avoid branching in inner loops function apply_inverse_quadrature(op::D2{T}, h_inv::Real, v::T, i::Integer, N::Integer) where T r = getregion(i, closuresize(op), N) return apply_inverse_quadrature(op, h_inv, v, i, N, r) end export apply_inverse_quadrature function apply_e_T(op::D2, v::AbstractVector, ::Type{Lower}) @boundscheck if length(v) < closuresize(op) throw(BoundsError()) end apply(op.eClosure,v,1) end function apply_e_T(op::D2, v::AbstractVector, ::Type{Upper}) @boundscheck if length(v) < closuresize(op) throw(BoundsError()) end apply(flip(op.eClosure),v,length(v)) end function apply_e(op::D2, v::Number, N::Integer, i::Integer, ::Type{Lower}) @boundscheck if !(0<length(i) <= N) throw(BoundsError()) end op.eClosure[i-1]*v end function apply_e(op::D2, v::Number, N::Integer, i::Integer, ::Type{Upper}) @boundscheck if !(0<length(i) <= N) throw(BoundsError()) end op.eClosure[N-i]*v end function apply_d_T(op::D2, h_inv::Real, v::AbstractVector, ::Type{Lower}) @boundscheck if length(v) < closuresize(op) throw(BoundsError()) end h_inv*apply(op.dClosure,v,1) end function apply_d_T(op::D2, h_inv::Real, v::AbstractVector, ::Type{Upper}) @boundscheck if length(v) < closuresize(op) throw(BoundsError()) end -h_inv*apply(flip(op.dClosure),v,length(v)) end function apply_d(op::D2, h_inv::Real, v::Number, N::Integer, i::Integer, ::Type{Lower}) @boundscheck if !(0<length(i) <= N) throw(BoundsError()) end h_inv*op.dClosure[i-1]*v end function apply_d(op::D2, h_inv::Real, v::Number, N::Integer, i::Integer, ::Type{Upper}) @boundscheck if !(0<length(i) <= N) throw(BoundsError()) end -h_inv*op.dClosure[N-i]*v end