Mercurial > repos > public > sbplib_julia
view LazyTensors/src/lazy_operations.jl @ 196:b3c252280a19 boundary_conditions
Move LazyArray and make LazyTensorMappingApplication and LazyElementwiseOperation subtypes of it
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 20 Jun 2019 23:25:38 +0200 |
parents | 5413067d2c4a |
children | a340fa91b1fc |
line wrap: on
line source
""" LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} Struct for lazy transpose of a TensorMapping. If a mapping implements the the `apply_transpose` method this allows working with the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling the appropriate methods of `m`. """ struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} tm::TensorMapping{T,R,D} end export LazyTensorMappingTranspose # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) Base.adjoint(t::LazyTensorMappingTranspose) = t.tm apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...) apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...) range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size) domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size) """ LazyArray{T,D} <: AbstractArray{T,D} Array which is calcualted lazily when indexing. A subtype of `LazyArray` will use lazy version of `+`, `-`, `*`, `/`. """ abstract type LazyArray{T,D} <: AbstractArray{T,D} end export LazyArray """ LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} Struct for lazy application of a TensorMapping. Created using `*`. Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. The actual result will be calcualted when indexing into `m*v`. """ struct LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} t::TensorMapping{T,R,D} o::AbstractArray{T,D} end export LazyTensorMappingApplication Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...) Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) # TODO: What else is needed to implement the AbstractArray interface? # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args) # # Should we overload some other infix binary operator? # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) # TODO: We need to be really careful about good error messages. # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? """ LazyElementwiseOperation{T,D,Op, T1<:AbstractArray{T,D}, T2 <: AbstractArray{T,D}} <: AbstractArray{T,D} Struct allowing for lazy evaluation of elementwise operations on AbstractArrays. A LazyElementwiseOperation contains two AbstractArrays of equal size, together with an operation. The operations are carried out when the LazyElementwiseOperation is indexed. """ struct LazyElementwiseOperation{T,D,Op, T1<:AbstractArray{T,D}, T2 <: AbstractArray{T,D}} <: LazyArray{T,D} a::T1 b::T2 function LazyElementwiseOperation{T,D,Op}(a::T1,b::T2) where {T,D,Op, T1<:AbstractArray{T,D}, T2<:AbstractArray{T,D}} return new{T,D,Op,T1,T2}(a,b) end end Base.size(v::LazyElementwiseOperation) = size(v.a) # TODO: Make sure boundschecking is done properly and that the lenght of the vectors are equal # NOTE: Boundschecking in getindex functions now assumes that the size of the # vectors in the LazyElementwiseOperation are the same size. If we remove the # size assertion in the constructor we might have to handle # boundschecking differently. Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:+}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] + leo.b[I...] end Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:-}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] - leo.b[I...] end Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:*}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] * leo.b[I...] end Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:/}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] / leo.b[I...] end # Define lazy operations for AbstractArrays. Operations constructs a LazyElementwiseOperation which # can later be indexed into. Lazy operations are denoted by the usual operator followed by a tilde @inline +̃(a::AbstractArray{T,D},b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:+}(a,b) @inline -̃(a::AbstractArray{T,D},b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:-}(a,b) @inline *̃(a::AbstractArray{T,D},b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:*}(a,b) @inline /̃(a::AbstractArray{T,D},b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:/}(a,b) Base.:+(a::LazyArray{T,D},b::AbstractArray{T,D}) where {T,D} = a +̃ b Base.:+(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = b + a Base.:-(a::LazyArray{T,D},b::AbstractArray{T,D}) where {T,D} = a -̃ b Base.:-(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b Base.:*(a::LazyArray{T,D},b::AbstractArray{T,D}) where {T,D} = a *̃ b Base.:*(a::AbstractArray{T,D},b::LazyArray{T,D}) where {T,D} = b * a # TODO: / seems to be ambiguous # Base.:/(a::LazyArray{T,D},b::AbstractArray{T,D}) where {T,D} = a /̃ b # Base.:/(a::AbstractArray{T,D},b::LazyArray{T,D}) where {T,D} = a /̃ b export +̃, -̃, *̃, /̃ # TODO: Write tests and documentation for LazyTensorMappingComposition # struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D} # t1::TensorMapping{T,R,K} # t2::TensorMapping{T,K,D} # end # Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t) # function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} # range_size(tm.t1, domain_size(tm.t2, domain_size)) # end # function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} # domain_size(tm.t1, domain_size(tm.t2, range_size)) # end # function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} # apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...) # end # function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} # apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...) # end # # Have i gone too crazy with the type parameters? Maybe they aren't all needed? # export →