Mercurial > repos > public > sbplib_julia
view benchmark/benchmarks.jl @ 1956:b0fcb29e3620 feature/grids/multiblock_boundaries
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 11 Feb 2025 08:54:18 +0100 |
parents | 471a948cd2b2 |
children |
line wrap: on
line source
using BenchmarkTools using Diffinitive using Diffinitive.Grids using Diffinitive.SbpOperators using Diffinitive.LazyTensors using LinearAlgebra const SUITE = BenchmarkGroup() sz(d) = ntuple(i->100, d) ll(d) = ntuple(i->0., d) lu(d) = ntuple(i->1., d) g1 = equidistant_grid(ll(1)[1], lu(1)[1], sz(1)...) g2 = equidistant_grid(ll(2), lu(2), sz(2)...) g3 = equidistant_grid(ll(3), lu(3), sz(3)...) v1 = rand(sz(1)...) v2 = rand(sz(2)...) v3 = rand(sz(3)...) u1 = rand(sz(1)...) u2 = rand(sz(2)...) u3 = rand(sz(3)...) stencil_set = read_stencil_set(joinpath(sbp_operators_path(),"standard_diagonal.toml"); order=4) SUITE["derivatives"] = BenchmarkGroup() SUITE["derivatives"]["first_derivative"] = BenchmarkGroup() D₁ = first_derivative(g1,stencil_set) SUITE["derivatives"]["first_derivative"]["1D"] = @benchmarkable $u1 .= $D₁*$v1 Dx = first_derivative(g2,stencil_set,1) Dy = first_derivative(g2,stencil_set,2) SUITE["derivatives"]["first_derivative"]["2D"] = BenchmarkGroup() SUITE["derivatives"]["first_derivative"]["2D"]["x"] = @benchmarkable $u2 .= $Dx*$v2 SUITE["derivatives"]["first_derivative"]["2D"]["y"] = @benchmarkable $u2 .= $Dy*$v2 Dx = first_derivative(g3,stencil_set,1) Dy = first_derivative(g3,stencil_set,2) Dz = first_derivative(g3,stencil_set,3) SUITE["derivatives"]["first_derivative"]["3D"] = BenchmarkGroup() SUITE["derivatives"]["first_derivative"]["3D"]["x"] = @benchmarkable $u3 .= $Dx*$v3 SUITE["derivatives"]["first_derivative"]["3D"]["y"] = @benchmarkable $u3 .= $Dy*$v3 SUITE["derivatives"]["first_derivative"]["3D"]["z"] = @benchmarkable $u3 .= $Dz*$v3 SUITE["derivatives"]["second_derivative"] = BenchmarkGroup() D₂ = second_derivative(g1,stencil_set) SUITE["derivatives"]["second_derivative"]["1D"] = @benchmarkable $u1 .= $D₂*$v1 Dx = second_derivative(g2,stencil_set,1) Dy = second_derivative(g2,stencil_set,2) SUITE["derivatives"]["second_derivative"]["2D"] = BenchmarkGroup() SUITE["derivatives"]["second_derivative"]["2D"]["x"] = @benchmarkable $u2 .= $Dx*$v2 SUITE["derivatives"]["second_derivative"]["2D"]["y"] = @benchmarkable $u2 .= $Dy*$v2 Dx = second_derivative(g3,stencil_set,1) Dy = second_derivative(g3,stencil_set,2) Dz = second_derivative(g3,stencil_set,3) SUITE["derivatives"]["second_derivative"]["3D"] = BenchmarkGroup() SUITE["derivatives"]["second_derivative"]["3D"]["x"] = @benchmarkable $u3 .= $Dx*$v3 SUITE["derivatives"]["second_derivative"]["3D"]["y"] = @benchmarkable $u3 .= $Dy*$v3 SUITE["derivatives"]["second_derivative"]["3D"]["z"] = @benchmarkable $u3 .= $Dz*$v3 SUITE["derivatives"]["second_derivative_variable"] = BenchmarkGroup() c1 = map(x->sin(x)+2, g1) D₂ = second_derivative_variable(g1, c1, stencil_set) SUITE["derivatives"]["second_derivative_variable"]["1D"] = @benchmarkable $u1 .= $D₂*$v1 c2 = map(x->sin(x[1] + x[2])+2, g2) Dx = second_derivative_variable(g2, c2, stencil_set, 1) Dy = second_derivative_variable(g2, c2, stencil_set, 2) SUITE["derivatives"]["second_derivative_variable"]["2D"] = BenchmarkGroup() SUITE["derivatives"]["second_derivative_variable"]["2D"]["x"] = @benchmarkable $u2 .= $Dx*$v2 SUITE["derivatives"]["second_derivative_variable"]["2D"]["y"] = @benchmarkable $u2 .= $Dy*$v2 c3 = map(x->sin(norm(x))+2, g3) Dx = second_derivative_variable(g3, c3, stencil_set, 1) Dy = second_derivative_variable(g3, c3, stencil_set, 2) Dz = second_derivative_variable(g3, c3, stencil_set, 3) SUITE["derivatives"]["second_derivative_variable"]["3D"] = BenchmarkGroup() SUITE["derivatives"]["second_derivative_variable"]["3D"]["x"] = @benchmarkable $u3 .= $Dx*$v3 SUITE["derivatives"]["second_derivative_variable"]["3D"]["y"] = @benchmarkable $u3 .= $Dy*$v3 SUITE["derivatives"]["second_derivative_variable"]["3D"]["z"] = @benchmarkable $u3 .= $Dz*$v3 SUITE["derivatives"]["addition"] = BenchmarkGroup() D₁ = first_derivative(g1,stencil_set) D₂ = second_derivative(g1,stencil_set) SUITE["derivatives"]["addition"]["1D"] = BenchmarkGroup() SUITE["derivatives"]["addition"]["1D"]["apply,add"] = @benchmarkable $u1 .= $D₁*$v1 + $D₂*$v1 SUITE["derivatives"]["addition"]["1D"]["add,apply"] = @benchmarkable $u1 .= ($D₁ + $D₂)*$v1 Dxx = second_derivative(g2,stencil_set,1) Dyy = second_derivative(g2,stencil_set,2) SUITE["derivatives"]["addition"]["2D"] = BenchmarkGroup() SUITE["derivatives"]["addition"]["2D"]["apply,add"] = @benchmarkable $u2 .= $Dxx*$v2 + $Dyy*$v2 SUITE["derivatives"]["addition"]["2D"]["add,apply"] = @benchmarkable $u2 .= ($Dxx + $Dyy)*$v2 Dxx = second_derivative(g3,stencil_set,1) Dyy = second_derivative(g3,stencil_set,2) Dzz = second_derivative(g3,stencil_set,3) SUITE["derivatives"]["addition"]["3D"] = BenchmarkGroup() SUITE["derivatives"]["addition"]["3D"]["apply,add"] = @benchmarkable $u3 .= $Dxx*$v3 + $Dyy*$v3 + $Dzz*$v3 SUITE["derivatives"]["addition"]["3D"]["add,apply"] = @benchmarkable $u3 .= ($Dxx + $Dyy + $Dzz)*$v3 SUITE["derivatives"]["composition"] = BenchmarkGroup() Dx = first_derivative(g1,stencil_set) SUITE["derivatives"]["composition"]["1D"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["1D"]["apply,apply"] = @benchmarkable $u1 .= $Dx*($Dx*$v1) SUITE["derivatives"]["composition"]["1D"]["compose,apply"] = @benchmarkable $u1 .= ($Dx∘$Dx)*$v1 Dx = first_derivative(g2,stencil_set,1) Dy = first_derivative(g2,stencil_set,2) SUITE["derivatives"]["composition"]["2D"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["2D"]["apply,apply"] = @benchmarkable $u2 .= $Dy*($Dx*$v2) SUITE["derivatives"]["composition"]["2D"]["compose,apply"] = @benchmarkable $u2 .= ($Dy∘$Dx)*$v2 Dx = first_derivative(g3,stencil_set,1) Dy = first_derivative(g3,stencil_set,2) Dz = first_derivative(g3,stencil_set,3) SUITE["derivatives"]["composition"]["3D"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["xy"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["xy"]["apply,apply"] = @benchmarkable $u3 .= $Dx*($Dy*$v3) SUITE["derivatives"]["composition"]["3D"]["xy"]["compose,apply"] = @benchmarkable $u3 .= ($Dx∘$Dy)*$v3 SUITE["derivatives"]["composition"]["3D"]["yz"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["yz"]["apply,apply"] = @benchmarkable $u3 .= $Dy*($Dz*$v3) SUITE["derivatives"]["composition"]["3D"]["yz"]["compose,apply"] = @benchmarkable $u3 .= ($Dy∘$Dz)*$v3 SUITE["derivatives"]["composition"]["3D"]["xz"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["xz"]["apply,apply"] = @benchmarkable $u3 .= $Dx*($Dz*$v3) SUITE["derivatives"]["composition"]["3D"]["xz"]["compose,apply"] = @benchmarkable $u3 .= ($Dx∘$Dz)*$v3 SUITE["derivatives"]["composition"]["3D"]["xx"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["xx"]["apply,apply"] = @benchmarkable $u3 .= $Dx*($Dx*$v3) SUITE["derivatives"]["composition"]["3D"]["xx"]["compose,apply"] = @benchmarkable $u3 .= ($Dx∘$Dx)*$v3 SUITE["derivatives"]["composition"]["3D"]["yy"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["yy"]["apply,apply"] = @benchmarkable $u3 .= $Dy*($Dy*$v3) SUITE["derivatives"]["composition"]["3D"]["yy"]["compose,apply"] = @benchmarkable $u3 .= ($Dy∘$Dy)*$v3 SUITE["derivatives"]["composition"]["3D"]["zz"] = BenchmarkGroup() SUITE["derivatives"]["composition"]["3D"]["zz"]["apply,apply"] = @benchmarkable $u3 .= $Dz*($Dz*$v3) SUITE["derivatives"]["composition"]["3D"]["zz"]["compose,apply"] = @benchmarkable $u3 .= ($Dz∘$Dz)*$v3 SUITE["boundary_terms"] = BenchmarkGroup() H = inner_product(g2, stencil_set) H⁻¹ = inverse_inner_product(g2, stencil_set) Dxx = second_derivative(g2, stencil_set, 1) Dyy = second_derivative(g2, stencil_set, 2) e₁ₗ = boundary_restriction(g2, stencil_set, CartesianBoundary{1,LowerBoundary}()) e₁ᵤ = boundary_restriction(g2, stencil_set, CartesianBoundary{1,UpperBoundary}()) e₂ₗ = boundary_restriction(g2, stencil_set, CartesianBoundary{2,LowerBoundary}()) e₂ᵤ = boundary_restriction(g2, stencil_set, CartesianBoundary{2,UpperBoundary}()) d₁ₗ = normal_derivative(g2, stencil_set, CartesianBoundary{1,LowerBoundary}()) d₁ᵤ = normal_derivative(g2, stencil_set, CartesianBoundary{1,UpperBoundary}()) d₂ₗ = normal_derivative(g2, stencil_set, CartesianBoundary{2,LowerBoundary}()) d₂ᵤ = normal_derivative(g2, stencil_set, CartesianBoundary{2,UpperBoundary}()) H₁ₗ = inner_product(boundary_grid(g2, CartesianBoundary{1,LowerBoundary}()), stencil_set) H₁ᵤ = inner_product(boundary_grid(g2, CartesianBoundary{1,UpperBoundary}()), stencil_set) H₂ₗ = inner_product(boundary_grid(g2, CartesianBoundary{2,LowerBoundary}()), stencil_set) H₂ᵤ = inner_product(boundary_grid(g2, CartesianBoundary{2,UpperBoundary}()), stencil_set) SUITE["boundary_terms"]["pre_composition"] = @benchmarkable $u2 .= $(H⁻¹∘e₁ₗ'∘H₁ₗ∘d₁ₗ)*$v2 SUITE["boundary_terms"]["composition"] = @benchmarkable $u2 .= ($H⁻¹∘$e₁ₗ'∘$H₁ₗ∘$d₁ₗ)*$v2 SUITE["boundary_terms"]["application"] = @benchmarkable $u2 .= $H⁻¹*$e₁ₗ'*$H₁ₗ* $d₁ₗ*$v2 # An investigation of these allocations can be found in the branch `allocation_test` #TODO: Reorg with dimension as first level? To reduce operator creation? SUITE["lazy_tensors"] = BenchmarkGroup() SUITE["lazy_tensors"]["compositions"] = BenchmarkGroup() s = ScalingTensor(1.,(10,)) u = rand(10) v = similar(u) s3 = s∘s∘s s4 = s∘s∘s∘s SUITE["lazy_tensors"]["compositions"]["s∘s∘s"] = @benchmarkable $v .= $s3*$u SUITE["lazy_tensors"]["compositions"]["s∘s∘s∘s"] = @benchmarkable $v .= $s4*$u SUITE