view src/LazyTensors/lazy_tensor.jl @ 996:aa72f067e771 refactor/lazy_tensors

Rename file
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 18 Mar 2022 21:17:01 +0100
parents src/LazyTensors/tensor_mapping.jl@1ba8a398af9c
children 7ef605b8f132
line wrap: on
line source

export LazyTensor
export apply
export apply_transpose
export range_dim, domain_dim
export range_size, domain_size

"""
    LazyTensor{T,R,D}

Describes a mapping of a `D` dimension tensor to an `R` dimension tensor.
The action of the mapping is implemented through the method
```julia
    apply(t::LazyTensor{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg) where {R,D,T}
```

The size of the range and domain that the operator works with should be returned by
the functions
```julia
    range_size(::LazyTensor)
    domain_size(::LazyTensor)
```
to allow querying for one or the other.

Optionally the action of the transpose may be defined through
```julia
    apply_transpose(t::LazyTensor{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
```
"""
abstract type LazyTensor{T,R,D} end

"""
    apply(t::LazyTensor{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg) where {R,D,T}

Return the result of the mapping for a given index.
"""
function apply end

"""
    apply_transpose(t::LazyTensor{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg) where {R,D,T}

Return the result of the transposed mapping for a given index.
"""
function apply_transpose end

"""
    range_dim(::LazyTensor)
Return the dimension of the range space of a given mapping
"""
range_dim(::LazyTensor{T,R,D}) where {T,R,D} = R

"""
    domain_dim(::LazyTensor)
Return the dimension of the domain space of a given mapping
"""
domain_dim(::LazyTensor{T,R,D}) where {T,R,D} = D


"""
    range_size(M::LazyTensor)

Return the range size for the mapping.
"""
function range_size end

"""
    domain_size(M::LazyTensor)

Return the domain size for the mapping.
"""
function domain_size end


"""
    eltype(::LazyTensor{T})

The type of elements the LazyTensor acts on.
"""
Base.eltype(::LazyTensor{T}) where T = T

# TODO: Think about boundschecking!