Mercurial > repos > public > sbplib_julia
view src/LazyTensors/lazy_tensor_operations.jl @ 468:a52f38e72258 feature/outer_product
Start implementing function for outer products
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 22 Oct 2020 10:18:57 +0200 |
parents | a0e40d16ba0e |
children | 481e86e77c22 |
line wrap: on
line source
""" LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} Struct for lazy application of a TensorMapping. Created using `*`. Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. The actual result will be calcualted when indexing into `m*v`. """ struct LazyTensorMappingApplication{T,R,D, TM<:TensorMapping{T,R,D}, AA<:AbstractArray{T,D}} <: LazyArray{T,R} t::TM o::AA end # TODO: Do boundschecking on creation! export LazyTensorMappingApplication # TODO: Go through and remove unneccerary type parameters on functions Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Index,R}) where {T,R,D} = apply(ta.t, ta.o, I...) Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Int,R}) where {T,R,D} = apply(ta.t, ta.o, Index{Unknown}.(I)...) Base.size(ta::LazyTensorMappingApplication) = range_size(ta.t) # TODO: What else is needed to implement the AbstractArray interface? Base.:*(a::TensorMapping, v::AbstractArray) = LazyTensorMappingApplication(a,v) Base.:*(a::TensorMapping, b::TensorMapping) = throw(MethodError(Base.:*,(a,b))) Base.:*(a::TensorMapping, args::Union{TensorMapping, AbstractArray}...) = foldr(*,(a,args...)) # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' # # Should we overload some other infix binary opesrator? # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) # TODO: We need to be really careful about good error messages. # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? """ LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} Struct for lazy transpose of a TensorMapping. If a mapping implements the the `apply_transpose` method this allows working with the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling the appropriate methods of `m`. """ struct LazyTensorMappingTranspose{T,R,D, TM<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} tm::TM end export LazyTensorMappingTranspose # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? # Jonatan 2020-09-25: Is the problem that you can take the transpose of any TensorMapping even if it doesn't implement `apply_transpose`? Base.adjoint(tm::TensorMapping) = LazyTensorMappingTranspose(tm) Base.adjoint(tmt::LazyTensorMappingTranspose) = tmt.tm apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Index,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmt.tm, v, I...) range_size(tmt::LazyTensorMappingTranspose) = domain_size(tmt.tm) domain_size(tmt::LazyTensorMappingTranspose) = range_size(tmt.tm) struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} tm1::T1 tm2::T2 @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} return new{Op,T,R,D,T1,T2}(tm1,tm2) end end # TODO: Boundschecking in constructor. apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) range_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}) where {Op,T,R,D} = range_size(tmBinOp.tm1) domain_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}) where {Op,T,R,D} = domain_size(tmBinOp.tm1) Base.:+(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(tm1,tm2) Base.:-(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(tm1,tm2) """ TensorMappingComposition{T,R,K,D} Lazily compose two TensorMappings, so that they can be handled as a single TensorMapping. """ struct TensorMappingComposition{T,R,K,D, TM1<:TensorMapping{T,R,K}, TM2<:TensorMapping{T,K,D}} <: TensorMapping{T,R,D} t1::TM1 t2::TM2 @inline function TensorMappingComposition(t1::TensorMapping{T,R,K}, t2::TensorMapping{T,K,D}) where {T,R,K,D} @boundscheck if domain_size(t1) != range_size(t2) throw(DimensionMismatch("the first argument has domain size $(domain_size(t1)) while the second has range size $(range_size(t2)) ")) end return new{T,R,K,D, typeof(t1), typeof(t2)}(t1,t2) end # Add check for matching sizes as a boundscheck end export TensorMappingComposition range_size(tm::TensorMappingComposition) = range_size(tm.t1) domain_size(tm::TensorMappingComposition) = domain_size(tm.t2) function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg{S,R} where S) where {T,R,K,D} apply(c.t1, c.t2*v, I...) end function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,R}, I::Vararg{S,D} where S) where {T,R,K,D} apply_transpose(c.t2, c.t1'*v, I...) end Base.@propagate_inbounds Base.:∘(s::TensorMapping, t::TensorMapping) = TensorMappingComposition(s,t) """ LazyLinearMap{T,R,D,...}(A, range_indicies, domain_indicies) TensorMapping defined by the AbstractArray A. `range_indicies` and `domain_indicies` define which indicies of A should be considerd the range and domain of the TensorMapping. Each set of indices must be ordered in ascending order. For instance, if A is a m x n matrix, and range_size = (1,), domain_size = (2,), then the LazyLinearMap performs the standard matrix-vector product on vectors of size n. """ struct LazyLinearMap{T,R,D, RD, AA<:AbstractArray{T,RD}} <: TensorMapping{T,R,D} A::AA range_indicies::NTuple{R,Int} domain_indicies::NTuple{D,Int} function LazyLinearMap(A::AA, range_indicies::NTuple{R,Int}, domain_indicies::NTuple{D,Int}) where {T,R,D, RD, AA<:AbstractArray{T,RD}} if !issorted(range_indicies) || !issorted(domain_indicies) throw(DomainError("range_indicies and domain_indicies must be sorted in ascending order")) end return new{T,R,D,RD,AA}(A,range_indicies,domain_indicies) end end export LazyLinearMap range_size(llm::LazyLinearMap) = size(llm.A)[[llm.range_indicies...]] domain_size(llm::LazyLinearMap) = size(llm.A)[[llm.domain_indicies...]] function apply(llm::LazyLinearMap{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} view_index = ntuple(i->:,ndims(llm.A)) for i ∈ 1:R view_index = Base.setindex(view_index, Int(I[i]), llm.range_indicies[i]) end A_view = @view llm.A[view_index...] return sum(A_view.*v) end function apply_transpose(llm::LazyLinearMap{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Index,D}) where {T,R,D} apply(LazyLinearMap(llm.A, llm.domain_indicies, llm.range_indicies), v, I...) end """ IdentityMapping{T,D} <: TensorMapping{T,D,D} The lazy identity TensorMapping for a given size. Usefull for building up higher dimensional tensor mappings from lower dimensional ones through outer products. Also used in the Implementation for InflatedTensorMapping. """ struct IdentityMapping{T,D} <: TensorMapping{T,D,D} size::NTuple{D,Int} end export IdentityMapping IdentityMapping{T}(size::NTuple{D,Int}) where {T,D} = IdentityMapping{T,D}(size) IdentityMapping{T}(size::Vararg{Int,D}) where {T,D} = IdentityMapping{T,D}(size) IdentityMapping(size::Vararg{Int,D}) where D = IdentityMapping{Float64,D}(size) range_size(tmi::IdentityMapping) = tmi.size domain_size(tmi::IdentityMapping) = tmi.size apply(tmi::IdentityMapping{T,D}, v::AbstractArray{T,D}, I::Vararg{Any,D}) where {T,D} = v[I...] apply_transpose(tmi::IdentityMapping{T,D}, v::AbstractArray{T,D}, I::Vararg{Any,D}) where {T,D} = v[I...] """ InflatedTensorMapping{T,R,D} <: TensorMapping{T,R,D} An inflated `TensorMapping` with dimensions added before and afer its actual dimensions. """ struct InflatedTensorMapping{T,R,D,D_before,R_middle,D_middle,D_after, TM<:TensorMapping{T,R_middle,D_middle}} <: TensorMapping{T,R,D} before::IdentityMapping{T,D_before} tm::TM after::IdentityMapping{T,D_after} function InflatedTensorMapping(before, tm::TensorMapping{T}, after) where T R_before = range_dim(before) R_middle = range_dim(tm) R_after = range_dim(after) R = R_before+R_middle+R_after D_before = domain_dim(before) D_middle = domain_dim(tm) D_after = domain_dim(after) D = D_before+D_middle+D_after return new{T,R,D,D_before,R_middle,D_middle,D_after, typeof(tm)}(before, tm, after) end end export InflatedTensorMapping """ InflatedTensorMapping(before, tm, after) The outer product of `before`, `tm` and `after`, where `before` and `after` are `IdentityMapping`s. """ InflatedTensorMapping(::IdentityMapping, ::TensorMapping, ::IdentityMapping) # TODO: Implement constructors where one of `before` or `after` is missing # TODO: Implement syntax and constructors for products of different combinations of InflatedTensorMapping and IdentityMapping # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2) function range_size(itm::InflatedTensorMapping) return flatten_tuple( range_size(itm.before), range_size(itm.tm), range_size(itm.after), ) end function domain_size(itm::InflatedTensorMapping) return flatten_tuple( domain_size(itm.before), domain_size(itm.tm), domain_size(itm.after), ) end function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} view_index, inner_index = split_index(itm, I...) v_inner = view(v, view_index...) return apply(itm.tm, v_inner, inner_index...) end """ split_index(...) Splits the multi-index into two parts. One part for the view that the inner TensorMapping acts on, and one part for indexing the result Eg. ``` (1,2,3,4) -> (1,:,:,4), (2,3) ``` """ function split_index(itm::InflatedTensorMapping{T,R,D}, I::Vararg{Any,R}) where {T,R,D} I_before = slice_tuple(I, Val(1), Val(range_dim(itm.before))) I_after = slice_tuple(I, Val(R-range_dim(itm.after)+1), Val(R)) view_index = (I_before..., ntuple((i)->:,domain_dim(itm.tm))..., I_after...) inner_index = slice_tuple(I, Val(range_dim(itm.before)+1), Val(R-range_dim(itm.after))) return (view_index, inner_index) end # TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21 # See: # https://github.com/JuliaLang/julia/issues/34884 # https://github.com/JuliaLang/julia/issues/30386 """ slice_tuple(t, Val(l), Val(u)) Get a slice of a tuple in a type stable way. Equivalent to t[l:u] but type stable. """ function slice_tuple(t,::Val{L},::Val{U}) where {L,U} return ntuple(i->t[i+L-1], U-L+1) end """ flatten_tuple(t) Takes a nested tuple and flattens the whole structure """ flatten_tuple(t::NTuple{N, Number} where N) = t flatten_tuple(t::Tuple) = ((flatten_tuple.(t)...)...,) # simplify? flatten_tuple(ts::Vararg) = flatten_tuple(ts) """ LazyOuterProduct(tms...) Creates a `TensorComposition` for the outerproduct of `tms...`. This is done by separating the outer product into regular products of outer products involving only identity mappings and one non-identity mapping. First let ```math A = A_{I,J} B = B_{M,N} C = C_{P,Q} ``` where ``I``, ``M``, ``P`` are multi-indexes for the ranges of ``A``, ``B``, ``C``, and ``J``, ``N``, ``Q`` are multi-indexes of the domains. We use ``⊗`` to denote the outer product ```math (A⊗B)_{IM,JN} = A_{I,J}B_{M,N} ``` We note that ```math A⊗B⊗C = (A⊗B⊗C)_{IMP,JNQ} = A_{I,J}B_{M,N}C_{P,Q} ``` And that ```math A⊗B⊗C = (A⊗I_{|M|}⊗I_{|P|})(I_{|J|}⊗B⊗I_{|P|})(I_{|J|}⊗I_{|N|}⊗C) ``` where |.| of a multi-index is a vector of sizes for each dimension. ``I_v`` denotes the identity tensor of size ``v[i]`` in each direction To apply ``A⊗B⊗C`` we evaluate (A⊗B⊗C)v = [(A⊗I_{|M|}⊗I_{|P|}) [(I_{|J|}⊗B⊗I_{|P|}) [(I_{|J|}⊗I_{|N|}⊗C)v]]] """ function LazyOuterProduct end export LazyOuterProduct function LazyOuterProduct(tm1::TensorMapping, tm2::TensorMapping) itm1 = InflatedTensorMapping(tm1, IdentityMapping(range_size(tm2))) itm2 = InflatedTensorMapping(IdentityMapping(domain_size(tm1)),tm2) return itm1∘itm2 end # length(tms) is always >= 1 since the two argument method is more specific. Right?? LazyOuterProduct(tm::TensorMapping, tms::Vararg{TensorMapping}) = tm∘LazyOuterProduct(tms...) ⊗(a::TensorMapping,b::TensorMapping) = LazyOuterProduct(a,b) ⊗(a,b,cs::Vararg{TensorMapping}) = ⊗(a⊗b, cs...) # TODO: Can we implement compositions and kroneckers of LazyIdentities to just return new LazyIdentities?