Mercurial > repos > public > sbplib_julia
view EquidistantGrid.jl @ 93:93df72e2b135 stencil_index
Implement apply for 2D-Laplace which takes an StencilIndex as input
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 04 Feb 2019 09:13:48 +0100 |
parents | c0f33eccd527 |
children |
line wrap: on
line source
# EquidistantGrid is a grid with equidistant grid spacing per coordinat # direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ # by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto # the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) # the domain is defined as (-1,1)x(0,2). struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid numberOfPointsPerDim::NTuple{Dim, Int} # First coordinate direction stored first, then limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} # General constructor function EquidistantGrid(nPointsPerDim::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T @assert all(nPointsPerDim.>0) @assert all(limit_upper.-limit_lower .!= 0) return new{Dim,T}(nPointsPerDim, limit_lower, limit_upper) end # # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) # function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) # return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) # end end # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid # @Return: numberOfPoints - The number of dimensions function numberOfDimensions(grid::EquidistantGrid) return length(grid.numberOfPointsPerDim) end # Computes the total number of points of an EquidistantGrid. # # @Input: grid - an EquidistantGrid # @Return: numberOfPoints - The total number of points function numberOfPoints(grid::EquidistantGrid) return prod(grid.numberOfPointsPerDim) end # Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance # between two points for each coordinate direction. # # @Input: grid - an EquidistantGrid # @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. function spacings(grid::EquidistantGrid) return abs.(grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) end # Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered # such that points in the first coordinate direction varies first, then the second # and lastely the third (if applicable) # # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) # Signed grid spacing dx̄ = (grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) # Compute the points based on their Cartesian indices and the signed # grid spacings points = Vector{typeof(dx̄)}(undef, numberOfPoints(grid)) cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) for i ∈ 1:numberOfPoints(grid) ci = Tuple(cartesianIndices[i]) .-1 points[i] = grid.limit_lower .+ dx̄.*ci end # TBD: Keep? this? How do we want to represent points in 1D? if numberOfDimensions(grid) == 1 points = broadcast(x -> x[1], points) end return points end function pointsalongdim(grid::EquidistantGrid, dim::Integer) @assert dim<=numberOfDimensions(grid) @assert dim>0 points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.numberOfPointsPerDim[dim]) end # # TODO: Move to own plotting module. using PyPlot, PyCall function plotgridfunction(grid::EquidistantGrid, gridfunction) if numberOfDimensions(grid) == 1 plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) elseif numberOfDimensions(grid) == 2 mx = grid.numberOfPointsPerDim[1] my = grid.numberOfPointsPerDim[2] X = repeat(pointsalongdim(grid,1),1,my) Y = permutedims(repeat(pointsalongdim(grid,2),1,mx)) plot_surface(X,Y,reshape(gridfunction,mx,my)); else error(string("Plot not implemented for dimension ", string(numberOfDimensions(grid)))) end end