Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/derivatives/second_derivative_variable.jl @ 932:863287577ad4 feature/variable_derivatives
Temporarily add specialized methods for 2D
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 22 Feb 2022 07:24:22 +0100 |
parents | 720b1358e06d |
children | 025a506ca2fa |
line wrap: on
line source
export SecondDerivativeVariable # REVIEW: Fixa docs """ SecondDerivativeVariable{Dir,T,D,...} <: TensorMapping{T,D,D} A second derivative operator in direction `Dir` with a variable coefficient. """ struct SecondDerivativeVariable{Dir,T,D,M,IStencil<:NestedStencil{T},CStencil<:NestedStencil{T},TArray<:AbstractArray} <: TensorMapping{T,D,D} inner_stencil::IStencil closure_stencils::NTuple{M,CStencil} size::NTuple{D,Int} coefficient::TArray function SecondDerivativeVariable{Dir, D}(inner_stencil::NestedStencil{T}, closure_stencils::NTuple{M,NestedStencil{T}}, size::NTuple{D,Int}, coefficient::AbstractArray) where {Dir,T,D,M} IStencil = typeof(inner_stencil) CStencil = eltype(closure_stencils) TArray = typeof(coefficient) return new{Dir,T,D,M,IStencil,CStencil,TArray}(inner_stencil,closure_stencils,size, coefficient) end end function SecondDerivativeVariable(grid::EquidistantGrid, coeff::AbstractArray, inner_stencil, closure_stencils, dir) Δxᵢ = spacing(grid)[dir] scaled_inner_stencil = scale(inner_stencil, 1/Δxᵢ^2) scaled_closure_stencils = scale.(Tuple(closure_stencils), 1/Δxᵢ^2) return SecondDerivativeVariable{dir, dimension(grid)}(scaled_inner_stencil, scaled_closure_stencils, size(grid), coeff) end function SecondDerivativeVariable(grid::EquidistantGrid{1}, coeff::AbstractVector, inner_stencil, closure_stencils) return SecondDerivativeVariable(grid, coeff, inner_stencil, closure_stencils, 1) end @doc raw""" SecondDerivativeVariable(grid::EquidistantGrid, coeff::AbstractArray, stencil_set, dir) Create a `TensorMapping` for the second derivative with a variable coefficient `coeff` on `grid` from the stencils in `stencil_set`. The direction is determined by `dir`. `coeff` is a grid function on `grid`. # Example With ``` D = SecondDerivativeVariable(g, c, stencil_set, 2) ``` then `D*u` approximates ```math \frac{\partial}{\partial y} c(x,y) \frac{\partial u}{\partial y}, ``` on ``(0,1)⨯(0,1)`` represented by `g`. """ function SecondDerivativeVariable(grid::EquidistantGrid, coeff::AbstractArray, stencil_set, dir) inner_stencil = parse_nested_stencil(eltype(coeff), stencil_set["D2variable"]["inner_stencil"]) closure_stencils = parse_nested_stencil.(eltype(coeff), stencil_set["D2variable"]["closure_stencils"]) return SecondDerivativeVariable(grid, coeff, inner_stencil, closure_stencils, dir) end derivative_direction(::SecondDerivativeVariable{Dir}) where {Dir} = Dir closure_size(op::SecondDerivativeVariable) = length(op.closure_stencils) LazyTensors.range_size(op::SecondDerivativeVariable) = op.size LazyTensors.domain_size(op::SecondDerivativeVariable) = op.size function derivative_view(op, a, I) d = derivative_direction(op) Iview = Base.setindex(I,:,d) return @view a[Iview...] end function apply_lower(op::SecondDerivativeVariable, v, I...) ṽ = derivative_view(op, v, I) c̃ = derivative_view(op, op.coefficient, I) i = I[derivative_direction(op)] return @inbounds apply_stencil(op.closure_stencils[i], c̃, ṽ, i) end function apply_interior(op::SecondDerivativeVariable, v, I...) ṽ = derivative_view(op, v, I) c̃ = derivative_view(op, op.coefficient, I) i = I[derivative_direction(op)] return apply_stencil(op.inner_stencil, c̃, ṽ, i) end function apply_upper(op::SecondDerivativeVariable, v, I...) ṽ = derivative_view(op, v, I) c̃ = derivative_view(op, op.coefficient, I) i = I[derivative_direction(op)] stencil = op.closure_stencils[op.size[derivative_direction(op)]-i+1] return @inbounds apply_stencil_backwards(stencil, c̃, ṽ, i) end function LazyTensors.apply(op::SecondDerivativeVariable, v::AbstractArray, I::Vararg{Index}) if I[derivative_direction(op)] isa Index{Lower} return apply_lower(op, v, Int.(I)...) elseif I[derivative_direction(op)] isa Index{Upper} return apply_upper(op, v, Int.(I)...) elseif I[derivative_direction(op)] isa Index{Interior} return apply_interior(op, v, Int.(I)...) else error("Invalid region") end end function LazyTensors.apply(op::SecondDerivativeVariable, v::AbstractArray, I...) dir = derivative_direction(op) i = I[dir] I = map(i->Index(i, Interior), I) if 0 < i <= closure_size(op) I = Base.setindex(I, Index(i, Lower), dir) return LazyTensors.apply(op, v, I...) elseif closure_size(op) < i <= op.size[dir]-closure_size(op) I = Base.setindex(I, Index(i, Interior), dir) return LazyTensors.apply(op, v, I...) elseif op.size[dir]-closure_size(op) < i <= op.size[dir] I = Base.setindex(I, Index(i, Upper), dir) return LazyTensors.apply(op, v, I...) else error("Bounds error") # TODO: Make this more standard end end ## 2D Specific implementations to avoid instability ## TODO: Should really be solved by fixing the general methods instead ## x-direction function apply_lower(op::SecondDerivativeVariable{1}, v, i, j) ṽ = @view v[:,j] c̃ = @view op.coefficient[:,j] return @inbounds apply_stencil(op.closure_stencils[i], c̃, ṽ, i) end function apply_interior(op::SecondDerivativeVariable{1}, v, i, j) ṽ = @view v[:,j] c̃ = @view op.coefficient[:,j] return @inbounds apply_stencil(op.inner_stencil, c̃, ṽ, i) end function apply_upper(op::SecondDerivativeVariable{1}, v, i, j) ṽ = @view v[:,j] c̃ = @view op.coefficient[:,j] stencil = op.closure_stencils[op.size[derivative_direction(op)]-i+1] return @inbounds apply_stencil_backwards(stencil, c̃, ṽ, i) end ## y-direction function apply_lower(op::SecondDerivativeVariable{2}, v, i, j) ṽ = @view v[i,:] c̃ = @view op.coefficient[i,:] return @inbounds apply_stencil(op.closure_stencils[j], c̃, ṽ, j) end function apply_interior(op::SecondDerivativeVariable{2}, v, i, j) ṽ = @view v[i,:] c̃ = @view op.coefficient[i,:] return @inbounds apply_stencil(op.inner_stencil, c̃, ṽ, j) end function apply_upper(op::SecondDerivativeVariable{2}, v, i, j) ṽ = @view v[i,:] c̃ = @view op.coefficient[i,:] stencil = op.closure_stencils[op.size[derivative_direction(op)]-j+1] return @inbounds apply_stencil_backwards(stencil, c̃, ṽ, j) end