Mercurial > repos > public > sbplib_julia
view LazyTensors/src/lazy_operations.jl @ 236:856caf960d89 boundary_conditions
Use CartesianIndex for a bunch of index operations
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2019 18:24:07 +0200 |
parents | a20bb4fac23d |
children | 1c6afdcfd657 |
line wrap: on
line source
""" LazyArray{T,D} <: AbstractArray{T,D} Array which is calcualted lazily when indexing. A subtype of `LazyArray` will use lazy version of `+`, `-`, `*`, `/`. """ abstract type LazyArray{T,D} <: AbstractArray{T,D} end export LazyArray """ LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} Struct for lazy application of a TensorMapping. Created using `*`. Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. The actual result will be calcualted when indexing into `m*v`. """ struct LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} t::TensorMapping{T,R,D} o::AbstractArray{T,D} end export LazyTensorMappingApplication Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...) Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) # TODO: What else is needed to implement the AbstractArray interface? # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args) # # Should we overload some other infix binary operator? # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) # TODO: We need to be really careful about good error messages. # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? """ LazyElementwiseOperation{T,D,Op, T1<:AbstractArray{T,D}, T2 <: AbstractArray{T,D}} <: AbstractArray{T,D} Struct allowing for lazy evaluation of elementwise operations on AbstractArrays. A LazyElementwiseOperation contains two AbstractArrays of equal size, together with an operation. The operations are carried out when the LazyElementwiseOperation is indexed. """ struct LazyElementwiseOperation{T,D,Op, T1<:AbstractArray{T,D}, T2 <: AbstractArray{T,D}} <: LazyArray{T,D} a::T1 b::T2 @inline function LazyElementwiseOperation{T,D,Op}(a::T1,b::T2) where {T,D,Op, T1<:AbstractArray{T,D}, T2<:AbstractArray{T,D}} @boundscheck if size(a) != size(b) throw(DimensionMismatch("dimensions must match")) end return new{T,D,Op,T1,T2}(a,b) end end # TODO: Move Op to be the first parameter? Compare to Binary operations Base.size(v::LazyElementwiseOperation) = size(v.a) # TODO: Make sure boundschecking is done properly and that the lenght of the vectors are equal # NOTE: Boundschecking in getindex functions now assumes that the size of the # vectors in the LazyElementwiseOperation are the same size. If we remove the # size assertion in the constructor we might have to handle # boundschecking differently. Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:+}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] + leo.b[I...] end Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:-}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] - leo.b[I...] end Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:*}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] * leo.b[I...] end Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:/}, I...) where {T,D} @boundscheck if !checkbounds(Bool,leo.a,I...) throw(BoundsError([leo],[I...])) end return leo.a[I...] / leo.b[I...] end # Define lazy operations for AbstractArrays. Operations constructs a LazyElementwiseOperation which # can later be indexed into. Lazy operations are denoted by the usual operator followed by a tilde Base.@propagate_inbounds +̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:+}(a,b) Base.@propagate_inbounds -̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:-}(a,b) Base.@propagate_inbounds *̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:*}(a,b) Base.@propagate_inbounds /̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:/}(a,b) # NOTE: Är det knas att vi har till exempel * istället för .* ?? # Oklart om det ens går att lösa.. Base.@propagate_inbounds Base.:+(a::LazyArray{T,D}, b::LazyArray{T,D}) where {T,D} = a +̃ b Base.@propagate_inbounds Base.:+(a::LazyArray{T,D}, b::AbstractArray{T,D}) where {T,D} = a +̃ b Base.@propagate_inbounds Base.:+(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a +̃ b Base.@propagate_inbounds Base.:-(a::LazyArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b Base.@propagate_inbounds Base.:-(a::LazyArray{T,D}, b::AbstractArray{T,D}) where {T,D} = a -̃ b Base.@propagate_inbounds Base.:-(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b # Element wise operation for `*` and `\` are not overloaded due to conflicts with the behavior # of regular `*` and `/` for AbstractArrays. Use tilde versions instead. export +̃, -̃, *̃, /̃ """ LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} Struct for lazy transpose of a TensorMapping. If a mapping implements the the `apply_transpose` method this allows working with the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling the appropriate methods of `m`. """ struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} tm::TensorMapping{T,R,D} end export LazyTensorMappingTranspose # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) Base.adjoint(t::LazyTensorMappingTranspose) = t.tm apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::CartesianIndex{D}) where {T,R,D} = apply_transpose(tm.tm, v, I) apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::CartesianIndex{R}) where {T,R,D} = apply(tm.tm, v, I) range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, d_size) domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, r_size) struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} A::T1 B::T2 @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(A::T1,B::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} return new{Op,T,R,D,T1,T2}(A,B) end end apply(mb::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(mb.A, v, I...) + apply(mb.B,v,I...) apply(mb::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(mb.A, v, I...) - apply(mb.B,v,I...) range_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, domain_size::NTuple{D,Integer}) where {Op,T,R,D} = range_size(mp.A, domain_size) domain_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, range_size::NTuple{R,Integer}) where {Op,T,R,D} = domain_size(mp.A, range_size) Base.:+(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(A,B) Base.:-(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(A,B) # TODO: Write tests and documentation for LazyTensorMappingComposition # struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D} # t1::TensorMapping{T,R,K} # t2::TensorMapping{T,K,D} # end # Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t) # function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} # range_size(tm.t1, domain_size(tm.t2, domain_size)) # end # function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} # domain_size(tm.t1, domain_size(tm.t2, range_size)) # end # function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} # apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...) # end # function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} # apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...) # end # # Have i gone too crazy with the type parameters? Maybe they aren't all needed? # export →