view LazyTensors/src/lazy_operations.jl @ 236:856caf960d89 boundary_conditions

Use CartesianIndex for a bunch of index operations
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 26 Jun 2019 18:24:07 +0200
parents a20bb4fac23d
children 1c6afdcfd657
line wrap: on
line source

"""
    LazyArray{T,D} <: AbstractArray{T,D}

Array which is calcualted lazily when indexing.

A subtype of `LazyArray` will use lazy version of `+`, `-`, `*`, `/`.
"""
abstract type LazyArray{T,D} <: AbstractArray{T,D} end
export LazyArray



"""
    LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R}

Struct for lazy application of a TensorMapping. Created using `*`.

Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`.
With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`.
The actual result will be calcualted when indexing into `m*v`.
"""
struct LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R}
    t::TensorMapping{T,R,D}
    o::AbstractArray{T,D}
end
export LazyTensorMappingApplication

Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)

Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...)
Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o))
# TODO: What else is needed to implement the AbstractArray interface?

# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args)
# # Should we overload some other infix binary operator?
# →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)
# TODO: We need to be really careful about good error messages.
# For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)?



"""
    LazyElementwiseOperation{T,D,Op, T1<:AbstractArray{T,D}, T2 <: AbstractArray{T,D}} <: AbstractArray{T,D}

Struct allowing for lazy evaluation of elementwise operations on AbstractArrays.

A LazyElementwiseOperation contains two AbstractArrays of equal size,
together with an operation. The operations are carried out when the
LazyElementwiseOperation is indexed.
"""
struct LazyElementwiseOperation{T,D,Op, T1<:AbstractArray{T,D}, T2 <: AbstractArray{T,D}} <: LazyArray{T,D}
    a::T1
    b::T2

    @inline function LazyElementwiseOperation{T,D,Op}(a::T1,b::T2) where {T,D,Op, T1<:AbstractArray{T,D}, T2<:AbstractArray{T,D}}
        @boundscheck if size(a) != size(b)
            throw(DimensionMismatch("dimensions must match"))
        end
        return new{T,D,Op,T1,T2}(a,b)
    end
end
# TODO: Move Op to be the first parameter? Compare to Binary operations

Base.size(v::LazyElementwiseOperation) = size(v.a)

# TODO: Make sure boundschecking is done properly and that the lenght of the vectors are equal
# NOTE: Boundschecking in getindex functions now assumes that the size of the
# vectors in the LazyElementwiseOperation are the same size. If we remove the
# size assertion in the constructor we might have to handle
# boundschecking differently.
Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:+}, I...) where {T,D}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],[I...]))
    end
    return leo.a[I...] + leo.b[I...]
end
Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:-}, I...) where {T,D}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],[I...]))
    end
    return leo.a[I...] - leo.b[I...]
end
Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:*}, I...) where {T,D}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],[I...]))
    end
    return leo.a[I...] * leo.b[I...]
end
Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:/}, I...) where {T,D}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],[I...]))
    end
    return leo.a[I...] / leo.b[I...]
end

# Define lazy operations for AbstractArrays. Operations constructs a LazyElementwiseOperation which
# can later be indexed into. Lazy operations are denoted by the usual operator followed by a tilde
Base.@propagate_inbounds +̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:+}(a,b)
Base.@propagate_inbounds -̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:-}(a,b)
Base.@propagate_inbounds *̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:*}(a,b)
Base.@propagate_inbounds /̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:/}(a,b)

# NOTE: Är det knas att vi har till exempel * istället för .* ??
# Oklart om det ens går att lösa..
Base.@propagate_inbounds Base.:+(a::LazyArray{T,D}, b::LazyArray{T,D}) where {T,D} = a +̃ b
Base.@propagate_inbounds Base.:+(a::LazyArray{T,D}, b::AbstractArray{T,D}) where {T,D} = a +̃ b
Base.@propagate_inbounds Base.:+(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a +̃ b

Base.@propagate_inbounds Base.:-(a::LazyArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b
Base.@propagate_inbounds Base.:-(a::LazyArray{T,D}, b::AbstractArray{T,D}) where {T,D} = a -̃ b
Base.@propagate_inbounds Base.:-(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b

# Element wise operation for `*` and `\` are not overloaded due to conflicts with the behavior
# of regular `*` and `/` for AbstractArrays. Use tilde versions instead.

export +̃, -̃, *̃, /̃



"""
    LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}

Struct for lazy transpose of a TensorMapping.

If a mapping implements the the `apply_transpose` method this allows working with
the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling
the appropriate methods of `m`.
"""
struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}
    tm::TensorMapping{T,R,D}
end
export LazyTensorMappingTranspose

# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors?
Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t)
Base.adjoint(t::LazyTensorMappingTranspose) = t.tm

apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::CartesianIndex{D}) where {T,R,D} = apply_transpose(tm.tm, v, I)
apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::CartesianIndex{R}) where {T,R,D} = apply(tm.tm, v, I)

range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, d_size)
domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, r_size)




struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R}
    A::T1
    B::T2

    @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(A::T1,B::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}}
        return new{Op,T,R,D,T1,T2}(A,B)
    end
end

apply(mb::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(mb.A, v, I...) + apply(mb.B,v,I...)
apply(mb::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(mb.A, v, I...) - apply(mb.B,v,I...)

range_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, domain_size::NTuple{D,Integer}) where {Op,T,R,D} = range_size(mp.A, domain_size)
domain_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, range_size::NTuple{R,Integer}) where {Op,T,R,D} = domain_size(mp.A, range_size)

Base.:+(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(A,B)
Base.:-(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(A,B)


# TODO: Write tests and documentation for LazyTensorMappingComposition
# struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D}
#     t1::TensorMapping{T,R,K}
#     t2::TensorMapping{T,K,D}
# end

# Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t)

# function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D}
#     range_size(tm.t1, domain_size(tm.t2, domain_size))
# end

# function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D}
#     domain_size(tm.t1, domain_size(tm.t2, range_size))
# end

# function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
#     apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...)
# end

# function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
#     apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...)
# end

# # Have i gone too crazy with the type parameters? Maybe they aren't all needed?

# export →