Mercurial > repos > public > sbplib_julia
view distributedTest.jl @ 151:80f7d7abe47d parallel_test
Removed unnecessary assertion
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 26 Feb 2019 11:49:56 +0100 |
parents | 4dc19757cada |
children |
line wrap: on
line source
#TODO: everywhere using here or just everywhere include? @everywhere using DistributedArrays # TODO: Currently uses integer division to calculate the local grid size. # Should we make sure this is handled in some way if mod(sz./nworkers()) != 0 # or keep assertions? @everywhere function create_partitioned_grid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}, nworkers_per_dim::NTuple{Dim, Int}) where Dim where T @assert mod.(size, nworkers_per_dim) == (0,0) # Translate the current worker id to a cartesian index, based on nworkers_per_dim ci = CartesianIndices(nworkers_per_dim); id = Tuple(ci[myid()-1]) # Compute the size of each partitioned grid size_partition = Int.(size./nworkers_per_dim) # Compute domain size for each partition domain_size = limit_upper.-limit_lower domain_partition_size = domain_size./nworkers_per_dim # Compute the lower and upper limit for each grid partition, then construct the grid ll_partition = limit_lower .+ domain_partition_size.*(id.-1) lu_partition = limit_lower .+ domain_partition_size.*id grid = sbp.Grid.EquidistantGrid(size_partition, ll_partition, lu_partition) return grid end @everywhere function timed_apply(op, u, v) @time sbp.apply_tiled!(op, u, v) return nothing end gridsize = (10000, 10000); # Global grid size nworkers_per_dim = (2,2) # Currently must have mod.(gridsize,n_workers_per_dim) == 0 v = dzeros(gridsize) # Distribured arrays u = dzeros(gridsize) # Distribured arrays @sync @distributed for p in workers() #Should these be declared globally or locally? limit_lower = (0., 0.) limit_upper = (2pi, 3pi/2) init(x,y) = sin(x) + sin(y) grid = create_partitioned_grid(gridsize, limit_lower , limit_upper, nworkers_per_dim) @inbounds v[:L] = sbp.Grid.evalOn(grid, init) op = sbp.readOperator("d2_4th.txt","h_4th.txt") Δ = sbp.Laplace(grid, 1.0, op) @inbounds timed_apply(Δ,u[:L], v[:L]) end @show maximum(abs.(u + v))