Mercurial > repos > public > sbplib_julia
view src/LazyTensors/lazy_tensor_operations.jl @ 1004:7fd37aab84fe refactor/lazy_tensors
Simplify bounds handling for LazyElementwiseOperation
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 20 Mar 2022 21:35:20 +0100 |
parents | 271aa6ae1055 |
children | becd95ba0fce |
line wrap: on
line source
# TODO: We need to be really careful about good error messages. # TODO: Go over type parameters """ LazyTensorApplication{T,R,D} <: LazyArray{T,R} Struct for lazy application of a LazyTensor. Created using `*`. Allows the result of a `LazyTensor` applied to a vector to be treated as an `AbstractArray`. With a mapping `m` and a vector `v` the LazyTensorApplication object can be created by `m*v`. The actual result will be calcualted when indexing into `m*v`. """ struct LazyTensorApplication{T,R,D, TM<:LazyTensor{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R} t::TM o::AA function LazyTensorApplication(t::LazyTensor{<:Any,R,D}, o::AbstractArray{<:Any,D}) where {R,D} I = ntuple(i->1, range_dim(t)) T = typeof(apply(t,o,I...)) return new{T,R,D,typeof(t), typeof(o)}(t,o) end end # TODO: Do boundschecking on creation! Base.getindex(ta::LazyTensorApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...) Base.getindex(ta::LazyTensorApplication{T,1}, I::CartesianIndex{1}) where {T} = apply(ta.t, ta.o, I.I...) # Would otherwise be caught in the previous method. Base.size(ta::LazyTensorApplication) = range_size(ta.t) # TODO: What else is needed to implement the AbstractArray interface? """ LazyTensorTranspose{T,R,D} <: LazyTensor{T,D,R} Struct for lazy transpose of a LazyTensor. If a mapping implements the the `apply_transpose` method this allows working with the transpose of mapping `m` by using `m'`. `m'` will work as a regular LazyTensor lazily calling the appropriate methods of `m`. """ struct LazyTensorTranspose{T,R,D, TM<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} tm::TM end # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? # Jonatan 2020-09-25: Is the problem that you can take the transpose of any LazyTensor even if it doesn't implement `apply_transpose`? Base.adjoint(tm::LazyTensor) = LazyTensorTranspose(tm) Base.adjoint(tmt::LazyTensorTranspose) = tmt.tm apply(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) apply_transpose(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) range_size(tmt::LazyTensorTranspose) = domain_size(tmt.tm) domain_size(tmt::LazyTensorTranspose) = range_size(tmt.tm) struct LazyTensorBinaryOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} tm1::T1 tm2::T2 function LazyTensorBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} return new{Op,T,R,D,T1,T2}(tm1,tm2) end end # TODO: Boundschecking in constructor. LazyTensorBinaryOperation{Op}(s,t) where Op = LazyTensorBinaryOperation{Op,eltype(s), range_dim(s), domain_dim(s)}(s,t) apply(tmBinOp::LazyTensorBinaryOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) apply(tmBinOp::LazyTensorBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) range_size(tmBinOp::LazyTensorBinaryOperation) = range_size(tmBinOp.tm1) domain_size(tmBinOp::LazyTensorBinaryOperation) = domain_size(tmBinOp.tm1) """ LazyTensorComposition{T,R,K,D} Lazily compose two `LazyTensor`s, so that they can be handled as a single `LazyTensor`. """ struct LazyTensorComposition{T,R,K,D, TM1<:LazyTensor{T,R,K}, TM2<:LazyTensor{T,K,D}} <: LazyTensor{T,R,D} t1::TM1 t2::TM2 function LazyTensorComposition(t1::LazyTensor{T,R,K}, t2::LazyTensor{T,K,D}) where {T,R,K,D} @boundscheck check_domain_size(t1, range_size(t2)) return new{T,R,K,D, typeof(t1), typeof(t2)}(t1,t2) end end range_size(tm::LazyTensorComposition) = range_size(tm.t1) domain_size(tm::LazyTensorComposition) = domain_size(tm.t2) function apply(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,K,D} apply(c.t1, c.t2*v, I...) end function apply_transpose(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D} apply_transpose(c.t2, c.t1'*v, I...) end """ LazyTensorComposition(tm, tmi::IdentityTensor) LazyTensorComposition(tmi::IdentityTensor, tm) Composes a `Tensormapping` `tm` with an `IdentityTensor` `tmi`, by returning `tm` """ function LazyTensorComposition(tm::LazyTensor{T,R,D}, tmi::IdentityTensor{T,D}) where {T,R,D} @boundscheck check_domain_size(tm, range_size(tmi)) return tm end function LazyTensorComposition(tmi::IdentityTensor{T,R}, tm::LazyTensor{T,R,D}) where {T,R,D} @boundscheck check_domain_size(tmi, range_size(tm)) return tm end # Specialization for the case where tm is an IdentityTensor. Required to resolve ambiguity. function LazyTensorComposition(tm::IdentityTensor{T,D}, tmi::IdentityTensor{T,D}) where {T,D} @boundscheck check_domain_size(tm, range_size(tmi)) return tmi end """ InflatedLazyTensor{T,R,D} <: LazyTensor{T,R,D} An inflated `LazyTensor` with dimensions added before and afer its actual dimensions. """ struct InflatedLazyTensor{T,R,D,D_before,R_middle,D_middle,D_after, TM<:LazyTensor{T,R_middle,D_middle}} <: LazyTensor{T,R,D} before::IdentityTensor{T,D_before} tm::TM after::IdentityTensor{T,D_after} function InflatedLazyTensor(before, tm::LazyTensor{T}, after) where T R_before = range_dim(before) R_middle = range_dim(tm) R_after = range_dim(after) R = R_before+R_middle+R_after D_before = domain_dim(before) D_middle = domain_dim(tm) D_after = domain_dim(after) D = D_before+D_middle+D_after return new{T,R,D,D_before,R_middle,D_middle,D_after, typeof(tm)}(before, tm, after) end end """ InflatedLazyTensor(before, tm, after) InflatedLazyTensor(before,tm) InflatedLazyTensor(tm,after) The outer product of `before`, `tm` and `after`, where `before` and `after` are `IdentityTensor`s. If one of `before` or `after` is left out, a 0-dimensional `IdentityTensor` is used as the default value. If `tm` already is an `InflatedLazyTensor`, `before` and `after` will be extended instead of creating a nested `InflatedLazyTensor`. """ InflatedLazyTensor(::IdentityTensor, ::LazyTensor, ::IdentityTensor) function InflatedLazyTensor(before, itm::InflatedLazyTensor, after) return InflatedLazyTensor( IdentityTensor(before.size..., itm.before.size...), itm.tm, IdentityTensor(itm.after.size..., after.size...), ) end InflatedLazyTensor(before::IdentityTensor, tm::LazyTensor{T}) where T = InflatedLazyTensor(before,tm,IdentityTensor{T}()) InflatedLazyTensor(tm::LazyTensor{T}, after::IdentityTensor) where T = InflatedLazyTensor(IdentityTensor{T}(),tm,after) # Resolve ambiguity between the two previous methods InflatedLazyTensor(I1::IdentityTensor{T}, I2::IdentityTensor{T}) where T = InflatedLazyTensor(I1,I2,IdentityTensor{T}()) # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedLazyTensor(I(3),B,I(2)) -> I(3)⊗B⊗I(2) function range_size(itm::InflatedLazyTensor) return flatten_tuple( range_size(itm.before), range_size(itm.tm), range_size(itm.after), ) end function domain_size(itm::InflatedLazyTensor) return flatten_tuple( domain_size(itm.before), domain_size(itm.tm), domain_size(itm.after), ) end function apply(itm::InflatedLazyTensor{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} dim_before = range_dim(itm.before) dim_domain = domain_dim(itm.tm) dim_range = range_dim(itm.tm) dim_after = range_dim(itm.after) view_index, inner_index = split_index(Val(dim_before), Val(dim_domain), Val(dim_range), Val(dim_after), I...) v_inner = view(v, view_index...) return apply(itm.tm, v_inner, inner_index...) end function apply_transpose(itm::InflatedLazyTensor{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} dim_before = range_dim(itm.before) dim_domain = domain_dim(itm.tm) dim_range = range_dim(itm.tm) dim_after = range_dim(itm.after) view_index, inner_index = split_index(Val(dim_before), Val(dim_range), Val(dim_domain), Val(dim_after), I...) v_inner = view(v, view_index...) return apply_transpose(itm.tm, v_inner, inner_index...) end @doc raw""" LazyOuterProduct(tms...) Creates a `LazyTensorComposition` for the outerproduct of `tms...`. This is done by separating the outer product into regular products of outer products involving only identity mappings and one non-identity mapping. First let ```math \begin{aligned} A &= A_{I,J} \\ B &= B_{M,N} \\ C &= C_{P,Q} \\ \end{aligned} ``` where ``I``, ``M``, ``P`` are multi-indexes for the ranges of ``A``, ``B``, ``C``, and ``J``, ``N``, ``Q`` are multi-indexes of the domains. We use ``⊗`` to denote the outer product ```math (A⊗B)_{IM,JN} = A_{I,J}B_{M,N} ``` We note that ```math A⊗B⊗C = (A⊗B⊗C)_{IMP,JNQ} = A_{I,J}B_{M,N}C_{P,Q} ``` And that ```math A⊗B⊗C = (A⊗I_{|M|}⊗I_{|P|})(I_{|J|}⊗B⊗I_{|P|})(I_{|J|}⊗I_{|N|}⊗C) ``` where ``|⋅|`` of a multi-index is a vector of sizes for each dimension. ``I_v`` denotes the identity tensor of size ``v[i]`` in each direction To apply ``A⊗B⊗C`` we evaluate ```math (A⊗B⊗C)v = [(A⊗I_{|M|}⊗I_{|P|}) [(I_{|J|}⊗B⊗I_{|P|}) [(I_{|J|}⊗I_{|N|}⊗C)v]]] ``` """ function LazyOuterProduct end function LazyOuterProduct(tm1::LazyTensor{T}, tm2::LazyTensor{T}) where T itm1 = InflatedLazyTensor(tm1, IdentityTensor{T}(range_size(tm2))) itm2 = InflatedLazyTensor(IdentityTensor{T}(domain_size(tm1)),tm2) return itm1∘itm2 end LazyOuterProduct(t1::IdentityTensor{T}, t2::IdentityTensor{T}) where T = IdentityTensor{T}(t1.size...,t2.size...) LazyOuterProduct(t1::LazyTensor, t2::IdentityTensor) = InflatedLazyTensor(t1, t2) LazyOuterProduct(t1::IdentityTensor, t2::LazyTensor) = InflatedLazyTensor(t1, t2) LazyOuterProduct(tms::Vararg{LazyTensor}) = foldl(LazyOuterProduct, tms) function check_domain_size(tm::LazyTensor, sz) if domain_size(tm) != sz throw(SizeMismatch(tm,sz)) end end struct SizeMismatch <: Exception tm::LazyTensor sz end function Base.showerror(io::IO, err::SizeMismatch) print(io, "SizeMismatch: ") print(io, "domain size $(domain_size(err.tm)) of LazyTensor not matching size $(err.sz)") end