Mercurial > repos > public > sbplib_julia
view diffOp.jl @ 153:754c36796ac8 boundary_conditions
Add missing where statement
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Apr 2019 09:43:56 +0200 |
parents | f54dd4408fa7 |
children | 3193bac1c086 |
line wrap: on
line source
abstract type DiffOp end # TBD: The "error("not implemented")" thing seems to be hiding good error information. How to fix that? Different way of saying that these should be implemented? function apply(D::DiffOp, v::AbstractVector, i::Int) error("not implemented") end function innerProduct(D::DiffOp, u::AbstractVector, v::AbstractVector)::Real error("not implemented") end function matrixRepresentation(D::DiffOp) error("not implemented") end function boundaryCondition(D::DiffOp,b::Grid.BoundaryId,type)::(Closure, Penalty) error("not implemented") end function interface(Du::DiffOp, Dv::DiffOp, b::Grid.BoundaryId; type) error("not implemented") end abstract type Closure end function apply(c::Closure, v::AbstractVector, i::Int) error("not implemented") end abstract type Penalty end function apply(c::Penalty, g, i::Int) error("not implemented") end abstract type DiffOpCartesian{Dim} <: DiffOp end # DiffOp must have a grid of dimension Dim!!! function apply!(D::DiffOpCartesian{Dim}, u::AbstractArray{T,Dim}, v::AbstractArray{T,Dim}) where {T,Dim} for I ∈ eachindex(D.grid) u[I] = apply(D, v, I) end return nothing end function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T apply_region!(D, u, v, Lower, Lower) apply_region!(D, u, v, Lower, Interior) apply_region!(D, u, v, Lower, Upper) apply_region!(D, u, v, Interior, Lower) apply_region!(D, u, v, Interior, Interior) apply_region!(D, u, v, Interior, Upper) apply_region!(D, u, v, Upper, Lower) apply_region!(D, u, v, Upper, Interior) apply_region!(D, u, v, Upper, Upper) return nothing end # Maybe this should be split according to b3fbef345810 after all?! Seems like it makes performance more predictable function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T for I ∈ regionindices(D.grid.size, closureSize(D.op), (r1,r2)) @inbounds indextuple = (Index{r1}(I[1]), Index{r2}(I[2])) @inbounds u[I] = apply(D, v, indextuple) end return nothing end function apply_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T apply_region_tiled!(D, u, v, Lower, Lower) apply_region_tiled!(D, u, v, Lower, Interior) apply_region_tiled!(D, u, v, Lower, Upper) apply_region_tiled!(D, u, v, Interior, Lower) apply_region_tiled!(D, u, v, Interior, Interior) apply_region_tiled!(D, u, v, Interior, Upper) apply_region_tiled!(D, u, v, Upper, Lower) apply_region_tiled!(D, u, v, Upper, Interior) apply_region_tiled!(D, u, v, Upper, Upper) return nothing end using TiledIteration function apply_region_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T ri = regionindices(D.grid.size, closureSize(D.op), (r1,r2)) # TODO: Pass Tilesize to function for tileaxs ∈ TileIterator(axes(ri), padded_tilesize(T, (5,5), 2)) for j ∈ tileaxs[2], i ∈ tileaxs[1] I = ri[i,j] u[I] = apply(D, v, (Index{r1}(I[1]), Index{r2}(I[2]))) end end return nothing end function apply(D::DiffOp, v::AbstractVector)::AbstractVector u = zeros(eltype(v), size(v)) apply!(D,v,u) return u end struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} grid::Grid.EquidistantGrid{Dim,T} a::T op::D2{Float64,N,M,K} end function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim error("not implemented") end # u = L*v function apply(L::Laplace{1}, v::AbstractVector, i::Int) uᵢ = L.a * apply(L.op, L.grid.spacing[1], v, i) return uᵢ end @inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} # 2nd x-derivative @inbounds vx = view(v, :, Int(I[2])) @inbounds uᵢ = L.a*apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) # 2nd y-derivative @inbounds vy = view(v, Int(I[1]), :) @inbounds uᵢ += L.a*apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) return uᵢ end # Slow but maybe convenient? function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) I = Index{Unknown}.(Tuple(i)) apply(L, v, I) end # Boundary operators function apply_e(L::Laplace{2}, v::AbstractArray{T,2} where T, ::CartesianBoundary{1,R}, j::Int) where R @inbounds vy = view(v, :, j) return apply_e(L.op,vy, R) end function apply_e(L::Laplace{2}, v::AbstractArray{T,2} where T, ::CartesianBoundary{2,R}, i::Int) where R @inbounds vx = view(v, i, :) return apply_e(L.op, vy, R) end function apply_d(L::Laplace{2}, v::AbstractArray{T,2} where T, ::CartesianBoundary{1,R}, j::Int) where R @inbounds vy = view(v, :, j) return apply_d(L.op,vy, R) end function apply_d(L::Laplace{2}, v::AbstractArray{T,2} where T, ::CartesianBoundary{2,R}, i::Int) where R @inbounds vx = view(v, i, :) return apply_d(L.op, vy, R) end function apply_e_T(L::Laplace{2}, v::AbstractArray{T,2} where T, boundaryId, i::Int) end function apply_d_T(L::Laplace{2}, v::AbstractArray{T,2} where T, boundaryId, i::Int) end """ A BoundaryCondition should implement the method sat(::DiffOp, v::AbstractArray, data::AbstractArray, ...) """ abstract type BoundaryCondition end struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition tau::Float64 end struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end function sat(L::Laplace{2}, bc::Neumann{CartesianBoundary{1,R}}, v::AbstractArray{T,2} where T, g::AbstractVector{T}, i::CartesianIndex{2}) where R # Hi * e * H_gamma * (d'*v - g) # e, d, H_gamma applied based on bc.boundaryId end function sat(L::Laplace{2}, bc::Dirichlet{CartesianBoundary{1,R}}, v::AbstractArray{T,2} where T, g::AbstractVector{T}, i::CartesianIndex{2}) where R # Hi * (tau/h*e + sig*d) * H_gamma * (e'*v - g) # e, d, H_gamma applied based on bc.boundaryId end