Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1983:730c9848ad0b feature/grids/geometry_functions
Update docstring for check_transfiniteinterpolation
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Feb 2025 22:50:52 +0100 |
parents | 471a948cd2b2 |
children | f3d7e2d7a43f |
line wrap: on
line source
using Test using Diffinitive.SbpOperators using Diffinitive.Grids using Diffinitive.LazyTensors @testset "Laplace" begin # Default stencils (4th order) operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) @testset "Constructors" begin @testset "1D" begin @test Laplace(g_1D, stencil_set) == Laplace(laplace(g_1D, stencil_set), stencil_set) @test Laplace(g_1D, stencil_set) isa LazyTensor{Float64,1,1} end @testset "3D" begin @test Laplace(g_3D, stencil_set) == Laplace(laplace(g_3D, stencil_set),stencil_set) @test Laplace(g_3D, stencil_set) isa LazyTensor{Float64,3,3} end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing.(g_3D.grids))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,eval_on(g_3D,f_i)) end # v = eval_on(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) # Δv = eval_on(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) v = eval_on(g_3D, x̄ -> sin(x̄[1]) + cos(x̄[2]) + exp(x̄[3])) Δv = eval_on(g_3D, x̄ -> -sin(x̄[1]) - cos(x̄[2]) + exp(x̄[3])) @inferred v[1,2,3] # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) Δ = Laplace(g_3D, stencil_set) @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) Δ = Laplace(g_3D, stencil_set) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-4 norm = l2 end end end @testset "laplace" begin operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) @testset "1D" begin Δ = laplace(g_1D, stencil_set) @test Δ == second_derivative(g_1D, stencil_set) @test Δ isa LazyTensor{Float64,1,1} end @testset "3D" begin Δ = laplace(g_3D, stencil_set) @test Δ isa LazyTensor{Float64,3,3} Dxx = second_derivative(g_3D, stencil_set, 1) Dyy = second_derivative(g_3D, stencil_set, 2) Dzz = second_derivative(g_3D, stencil_set, 3) @test Δ == Dxx + Dyy + Dzz @test Δ isa LazyTensor{Float64,3,3} end end @testset "sat_tensors" begin # TODO: The following tests should be implemented # 1. Symmetry D'H == H'D (test_broken below) # 2. Test eigenvalues of and/or solution to Poisson # 3. Test tuning of Dirichlet conditions # # These tests are likely easiest to implement once # we have support for generating matrices from tensors. operator_path = sbp_operators_path()*"standard_diagonal.toml" orders = (2,4) tols = (5e-2,5e-4) sz = (201,401) g = equidistant_grid((0.,0.), (1.,1.), sz...) # Verify implementation of sat_tensors by testing accuracy and symmetry (TODO) # of the operator D = Δ + SAT, where SAT is the tensor composition of the # operators from sat_tensor. Note that SAT*u should approximate 0 for the # conditions chosen. @testset "Dirichlet" begin for (o, tol) ∈ zip(orders,tols) stencil_set = read_stencil_set(operator_path; order=o) Δ = Laplace(g, stencil_set) H = inner_product(g, stencil_set) u = collect(eval_on(g, (x,y) -> sin(π*x)sin(2*π*y))) Δu = collect(eval_on(g, (x,y) -> -5*π^2*sin(π*x)sin(2*π*y))) D = Δ for id ∈ boundary_identifiers(g) D = D + foldl(∘, sat_tensors(Δ, g, DirichletCondition(0., id))) end e = D*u .- Δu # Accuracy @test sqrt(sum(H*e.^2)) ≈ 0 atol = tol # Symmetry r = randn(size(u)) @test_broken (D'∘H - H∘D)*r .≈ 0 atol = 1e-13 # TODO: Need to implement apply_transpose for D. end end @testset "Neumann" begin @testset "Dirichlet" begin for (o, tol) ∈ zip(orders,tols) stencil_set = read_stencil_set(operator_path; order=o) Δ = Laplace(g, stencil_set) H = inner_product(g, stencil_set) u = collect(eval_on(g, (x,y) -> cos(π*x)cos(2*π*y))) Δu = collect(eval_on(g, (x,y) -> -5*π^2*cos(π*x)cos(2*π*y))) D = Δ for id ∈ boundary_identifiers(g) D = D + foldl(∘, sat_tensors(Δ, g, NeumannCondition(0., id))) end e = D*u .- Δu # Accuracy @test sqrt(sum(H*e.^2)) ≈ 0 atol = tol # Symmetry r = randn(size(u)) @test_broken (D'∘H - H∘D)*r .≈ 0 atol = 1e-13 # TODO: Need to implement apply_transpose for D. end end end end