Mercurial > repos > public > sbplib_julia
view src/Grids/geometry.jl @ 2014:6478c29effce feature/grids/geometry_functions
Add docstring for Arc and arc
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 09 May 2025 07:42:21 +0200 |
parents | 7895b509f9bf |
children |
line wrap: on
line source
struct Line{PT} p::PT tangent::PT Line{PT}(p::PT, tangent::PT) where PT = new{PT}(p,tangent) end """ Line(p,t) A line, as a callable object, starting at `p` with tangent `t`. # Example ```julia-repl julia> l = Grids.Line([1,1],[2,1]) Diffinitive.Grids.Line{StaticArraysCore.SVector{2, Int64}}([1, 1], [2, 1]) julia> l(0) 2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2): 1 1 julia> l(1) 2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2): 3 2 ``` See also: [`LineSegment`](@ref). """ function Line(p, t) p = SVector{length(p)}(p) t = SVector{length(t)}(t) p, t = promote(p, t) return Line{typeof(p)}(p,t) end (c::Line)(s) = c.p + s*c.tangent Grids.jacobian(l::Line, t) = l.tangent struct LineSegment{PT} a::PT b::PT LineSegment{PT}(p::PT, tangent::PT) where PT = new{PT}(p,tangent) end """ LineSegment(a,b) A line segment, as a callable object, from `a` to `b`. # Example ```julia-repl julia> l = Grids.LineSegment([1,1],[2,1]) Diffinitive.Grids.LineSegment{StaticArraysCore.SVector{2, Int64}}([1, 1], [2, 1]) julia> l(0) 2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2): 1 1 julia> l(0.5) 2-element StaticArraysCore.SVector{2, Float64} with indices SOneTo(2): 1.5 1.0 julia> l(1) 2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2): 2 1 ``` See also: [`Line`](@ref). """ function LineSegment(a, b) a = SVector{length(a)}(a) b = SVector{length(b)}(b) a, b = promote(a, b) return LineSegment{typeof(a)}(a,b) end (c::LineSegment)(s) = (1-s)*c.a + s*c.b Grids.jacobian(c::LineSegment, s) = c.b - c.a """ linesegments(ps...) An array of line segments between the points `ps[1]`, `ps[2]`, and so on. See also: [`polygon_edges`](@ref). """ function linesegments(ps...) return [LineSegment(ps[i], ps[i+1]) for i ∈ 1:length(ps)-1] end """ polygon_edges(ps...) An array of line segments between the points `ps[1]`, `ps[2]`, and so on including the segment between `ps[end]` and `ps[1]`. See also: [`linesegments`](@ref). """ function polygon_edges(ps...) n = length(ps) return [LineSegment(ps[i], ps[mod1(i+1,n)]) for i ∈ eachindex(ps)] end struct Circle{PT,T} c::PT r::T Circle{PT,T}(c,r) where {PT,T} = new{PT,T}(c,r) end """ Circle(c,r) A circle with center `c` and radius `r` paramatrized with the angle to the x-axis. # Example ```julia-repl julia> c = Grids.Circle([1,1], 2) Diffinitive.Grids.Circle{StaticArraysCore.SVector{2, Int64}, Int64}([1, 1], 2) julia> c(0) 2-element StaticArraysCore.SVector{2, Float64} with indices SOneTo(2): 3.0 1.0 julia> c(π/2) 2-element StaticArraysCore.SVector{2, Float64} with indices SOneTo(2): 1.0000000000000002 3.0 ``` """ function Circle(c,r) c = SVector{2}(c) return Circle{typeof(c), typeof(r)}(c,r) end function (C::Circle)(θ) (;c, r) = C c + r*@SVector[cos(θ), sin(θ)] end function Grids.jacobian(C::Circle, θ) (;r) = C r*@SVector[-sin(θ), cos(θ)] end struct Arc{PT,T} c::Circle{PT,T} θ₀::T θ₁::T end """ Arc(C::Circle, θ₀, θ₁) A circular arc as a callable object. The arc is around the circle `C` between angles `θ₀` and `θ₁` and is paramatrized between 0 and 1. See also: [`arc`](@ref), [`Circle`](@ref). """ function Arc(C, θ₀, θ₁) r, θ₀, θ₁ = promote(C.r, θ₀, θ₁) return Arc(Circle(C.c, r), θ₀, θ₁) end function (A::Arc)(t) (; θ₀, θ₁) = A return A.c((1-t)*θ₀ + t*θ₁) end function Grids.jacobian(A::Arc, t) (;c, θ₀, θ₁) = A return (θ₁-θ₀)*jacobian(c, t) end """ arc(a,b,r) A circular arc between the points `a` and `b` with radius `abs(r)`. If `r > 0` the arc goes counter clockwise and if `r<0` the arc goes clockwise. The arc is parametrized such that if `A = arc(a,b,r)` then `A(0)` corresponds to `a` and `A(1)` to `b`. See also: [`Arc`](@ref), [`Circle`](@ref). """ function arc(a,b,r) if abs(r) < norm(b-a)/2 throw(DomainError(r, "arc was called with radius r = $r smaller than half the distance between the points.")) end R̂ = @SMatrix[0 -1; 1 0] α = sign(r)*√(r^2 - norm((b-a)/2)^2) t̂ = R̂*(b-a)/norm(b-a) c = (a+b)/2 + α*t̂ ca = a-c cb = b-c θₐ = atan(ca[2],ca[1]) θᵦ = atan(cb[2],cb[1]) Δθ = mod(θᵦ-θₐ+π, 2π)-π # Δθ in the interval (-π,π) if r > 0 Δθ = abs(Δθ) else Δθ = -abs(Δθ) end return Arc(Circle(c,abs(r)), θₐ, θₐ+Δθ) end """ TransfiniteInterpolationSurface(c₁, c₂, c₃, c₄) A surface defined by the transfinite interpolation of the curves `c₁`, `c₂`, `c₃`, and `c₄`. """ struct TransfiniteInterpolationSurface{T1,T2,T3,T4} c₁::T1 c₂::T2 c₃::T3 c₄::T4 end function (s::TransfiniteInterpolationSurface)(u,v) c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄ P₀₀ = c₁(0) P₁₀ = c₂(0) P₁₁ = c₃(0) P₀₁ = c₄(0) return (1-v)*c₁(u) + u*c₂(v) + v*c₃(1-u) + (1-u)*c₄(1-v) - ( (1-u)*(1-v)*P₀₀ + u*(1-v)*P₁₀ + u*v*P₁₁ + (1-u)*v*P₀₁ ) end function (s::TransfiniteInterpolationSurface)(ξ̄::AbstractArray) s(ξ̄...) end """ check_transfiniteinterpolation(s::TransfiniteInterpolationSurface) Throw an error if the ends of the curves in the transfinite interpolation do not match. """ function check_transfiniteinterpolation(s::TransfiniteInterpolationSurface) if check_transfiniteinterpolation(Bool, s) return nothing else throw(ArgumentError("The end of each curve in the transfinite interpolation should be the same as the beginning of the next curve.")) end end """ check_transfiniteinterpolation(Bool, s::TransfiniteInterpolationSurface) Return true if the ends of the curves in the transfinite interpolation match. """ function check_transfiniteinterpolation(::Type{Bool}, s::TransfiniteInterpolationSurface) if !isapprox(s.c₁(1), s.c₂(0)) return false end if !isapprox(s.c₂(1), s.c₃(0)) return false end if !isapprox(s.c₃(1), s.c₄(0)) return false end if !isapprox(s.c₄(1), s.c₁(0)) return false end return true end function Grids.jacobian(s::TransfiniteInterpolationSurface, ξ̄) u, v = ξ̄ c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄ P₀₀ = c₁(0) P₁₀ = c₂(0) P₁₁ = c₃(0) P₀₁ = c₄(0) ∂x̄∂ξ₁ = (1-v)*jacobian(c₁,u) + c₂(v) - v*jacobian(c₃,1-u) -c₄(1-v) - ( -(1-v)*P₀₀ + (1-v)*P₁₀ + v*P₁₁ - v*P₀₁ ) ∂x̄∂ξ₂ = -c₁(u) + u*jacobian(c₂,v) + c₃(1-u) - (1-u)*jacobian(c₄,1-v) - ( -(1-u)*P₀₀ - u*P₁₀ + u*P₁₁ + (1-u)*P₀₁ ) return [∂x̄∂ξ₁ ∂x̄∂ξ₂] end