view LazyTensors/src/lazy_array.jl @ 267:634453a4e1d8 boundary_conditions

Restructure code in LazyTensors
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 05 Dec 2019 09:28:04 +0100
parents
children 41c3c25e4e3b
line wrap: on
line source

"""
    LazyArray{T,D} <: AbstractArray{T,D}

Array which is calcualted lazily when indexing.

A subtype of `LazyArray` will use lazy version of `+`, `-`, `*`, `/`.
"""
abstract type LazyArray{T,D} <: AbstractArray{T,D} end
export LazyArray

"""
    LazyElementwiseOperation{T,D,Op,T1,T2} <: LazyArray{T,D}
Struct allowing for lazy evaluation of elementwise operations on AbstractArrays.

A LazyElementwiseOperation contains two datatypes T1, and T2, together with an operation,
where at least one of T1 and T2 is an AbstractArray, and one may be a Real.
The operations are carried out when the LazyElementwiseOperation is indexed.
"""
struct LazyElementwiseOperation{T,D,Op,T1,T2} <: LazyArray{T,D}
    a::T1
    b::T2

    @inline function LazyElementwiseOperation{T,D,Op}(a::T1,b::T2) where {T,D,Op,T1<:AbstractArray{T,D},T2<:AbstractArray{T,D}}
        @boundscheck if size(a) != size(b)
            throw(DimensionMismatch("dimensions must match"))
        end
        return new{T,D,Op,T1,T2}(a,b)
    end

    @inline function LazyElementwiseOperation{T,D,Op}(a::T1,b::T2) where {T,D,Op,T1<:AbstractArray{T,D},T2<:Real}
        return new{T,D,Op,T1,T2}(a,b)
    end

    @inline function LazyElementwiseOperation{T,D,Op}(a::T1,b::T2) where {T,D,Op,T1<:Real,T2<:AbstractArray{T,D}}
        return new{T,D,Op,T1,T2}(a,b)
    end
end
# TODO: Move Op to be the first parameter? Compare to Binary operations

Base.size(v::LazyElementwiseOperation) = size(v.a)

# TODO: Make sure boundschecking is done properly and that the lenght of the vectors are equal
# NOTE: Boundschecking in getindex functions now assumes that the size of the
# vectors in the LazyElementwiseOperation are the same size. If we remove the
# size assertion in the constructor we might have to handle
# boundschecking differently.
Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:+,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] + leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:-,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] - leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:*,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] * leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:/,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] / leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:+,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:Real}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] + leo.b
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:-,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:Real}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] - leo.b
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:*,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:Real}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] * leo.b
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:/,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:AbstractArray{T,D},T2<:Real}
    @boundscheck if !checkbounds(Bool,leo.a,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a[I...] / leo.b
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:+,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:Real,T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.b,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a + leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:-,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:Real,T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.b,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a - leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:*,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:Real,T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.b,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a * leo.b[I...]
end

Base.@propagate_inbounds @inline function Base.getindex(leo::LazyElementwiseOperation{T,D,:/,T1,T2}, I::Vararg{Int,D}) where {T,D,T1<:Real,T2<:AbstractArray{T,D}}
    @boundscheck if !checkbounds(Bool,leo.b,I...)
        throw(BoundsError([leo],I...))
    end
    return leo.a / leo.b[I...]
end

# Define lazy operations for AbstractArrays. Operations constructs a LazyElementwiseOperation which
# can later be indexed into. Lazy operations are denoted by the usual operator followed by a tilde
Base.@propagate_inbounds +̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:+}(a,b)
Base.@propagate_inbounds -̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:-}(a,b)
Base.@propagate_inbounds *̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:*}(a,b)
Base.@propagate_inbounds /̃(a::AbstractArray{T,D}, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:/}(a,b)

Base.@propagate_inbounds +̃(a::AbstractArray{T,D}, b::Real) where {T,D} = LazyElementwiseOperation{T,D,:+}(a,b)
Base.@propagate_inbounds -̃(a::AbstractArray{T,D}, b::Real) where {T,D} = LazyElementwiseOperation{T,D,:-}(a,b)
Base.@propagate_inbounds *̃(a::AbstractArray{T,D}, b::Real) where {T,D} = LazyElementwiseOperation{T,D,:*}(a,b)
Base.@propagate_inbounds /̃(a::AbstractArray{T,D}, b::Real) where {T,D} = LazyElementwiseOperation{T,D,:/}(a,b)

Base.@propagate_inbounds +̃(a::Real, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:+}(a,b)
Base.@propagate_inbounds -̃(a::Real, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:-}(a,b)
Base.@propagate_inbounds *̃(a::Real, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:*}(a,b)
Base.@propagate_inbounds /̃(a::Real, b::AbstractArray{T,D}) where {T,D} = LazyElementwiseOperation{T,D,:/}(a,b)



# NOTE: Är det knas att vi har till exempel * istället för .* ??
# Oklart om det ens går att lösa..
Base.@propagate_inbounds Base.:+(a::LazyArray{T,D}, b::LazyArray{T,D}) where {T,D} = a +̃ b
Base.@propagate_inbounds Base.:+(a::LazyArray{T,D}, b::AbstractArray{T,D}) where {T,D} = a +̃ b
Base.@propagate_inbounds Base.:+(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a +̃ b

Base.@propagate_inbounds Base.:-(a::LazyArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b
Base.@propagate_inbounds Base.:-(a::LazyArray{T,D}, b::AbstractArray{T,D}) where {T,D} = a -̃ b
Base.@propagate_inbounds Base.:-(a::AbstractArray{T,D}, b::LazyArray{T,D}) where {T,D} = a -̃ b

# Element wise operation for `*` and `\` are not overloaded due to conflicts with the behavior
# of regular `*` and `/` for AbstractArrays. Use tilde versions instead.

export +̃, -̃, *̃, /̃