Mercurial > repos > public > sbplib_julia
view EquidistantGrid.jl @ 124:631eb9b35d72 cell_based_test
Make grid spacing a property of EquidistantGrid. Create plotting module for sbplib.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 13 Feb 2019 10:37:52 +0100 |
parents | 9d53ecca34f7 |
children | 1aaeb46ba5f4 |
line wrap: on
line source
# EquidistantGrid is a grid with equidistant grid spacing per coordinat # direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ # by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto # the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) # the domain is defined as (-1,1)x(0,2). struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid size::NTuple{Dim, Int} # First coordinate direction stored first limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} spacing::NTuple{Dim, T} # General constructor function EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T @assert all(size.>0) @assert all(limit_upper.-limit_lower .!= 0) spacing = abs.(limit_upper.-limit_lower)./(size.-1) return new{Dim,T}(size, limit_lower, limit_upper, spacing) end end # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid # @Return: dimension - The dimension of the grid function dimension(grid::EquidistantGrid) return length(grid.size) end function Base.eachindex(grid::EquidistantGrid) CartesianIndices(grid.size) end # Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered # such that points in the first coordinate direction varies first, then the second # and lastely the third (if applicable) # # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) # TODO: Make this return an abstract array? physical_domain_size = (grid.limit_upper .- grid.limit_lower) indices = Tuple.(CartesianIndices(grid.size)) return broadcast(I -> grid.limit_lower .+ physical_domain_size.*(I.-1), indices) end function pointsalongdim(grid::EquidistantGrid, dim::Integer) @assert dim<=dimension(grid) @assert dim>0 points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.size[dim]) end