Mercurial > repos > public > sbplib_julia
view src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl @ 507:576c6d1acc28 feature/quadrature_as_outer_product
Make function naming more consistent.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 07 Nov 2020 13:31:55 +0100 |
parents | c2f991b819fc |
children | 3c18a15934a7 |
line wrap: on
line source
""" inverse_diagonal_quadrature(g,quadrature_closure) Constructs the diagonal quadrature inverse operator `Hi` on a grid of `Dim` dimensions as a `TensorMapping`. The one-dimensional operator is a InverseDiagonalQuadrature, while the multi-dimensional operator is the outer-product of the one-dimensional operators in each coordinate direction. """ function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure) for i ∈ 2:Dim Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure) end return Hi end export inverse_diagonal_quadrature """ InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1} Implements the one-dimensional inverse diagonal quadrature operator as a `TensorMapping TODO: Elaborate on properties """ struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1} h_inv::T closure::NTuple{M,T} size::Tuple{Int} end export InverseDiagonalQuadrature function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g)) end LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds Hi.h_inv*Hi.closure[Int(I)]*v[Int(I)] end function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Upper}) where T N = length(v); return @inbounds Hi.h_inv*Hi.closure[N-Int(I)+1]*v[Int(I)] end function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds Hi.h_inv*v[Int(I)] end function LazyTensors.apply(Hi::InverseDiagonalQuadrature, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v); r = getregion(Int(index), closure_size(Hi), N) i = Index(Int(index), r) return LazyTensors.apply(Hi, v, i) end LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(Hi,v,I) """ closure_size(H) Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`. """ closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M export closure_size