Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/derivatives/first_derivative_test.jl @ 1726:471a948cd2b2 rename_module
Rename project from Sbplib to Diffinitive
author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
---|---|
date | Sat, 07 Sep 2024 12:11:53 -0700 |
parents | 8e28cadfefb3 |
children |
line wrap: on
line source
using Test using Diffinitive.SbpOperators using Diffinitive.Grids using Diffinitive.LazyTensors using Diffinitive.SbpOperators: closure_size, Stencil, VolumeOperator @testset "first_derivative" begin @testset "Constructors" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) g₁ = equidistant_grid(0., 1., 11) g₂ = equidistant_grid((0.,1.), (1.,3.), 11, 14) @test first_derivative(g₁, stencil_set) isa LazyTensor{Float64,1,1} @test first_derivative(g₂, stencil_set, 2) isa LazyTensor{Float64,2,2} interior_stencil = CenteredStencil(-1,0,1) closure_stencils = [Stencil(-1,1, center=1)] @test first_derivative(g₁, interior_stencil, closure_stencils) isa LazyTensor{Float64,1,1} end @testset "Accuracy conditions" begin N = 20 g = equidistant_grid(0//1, 2//1, N) monomial(x,k) = k < 0 ? zero(x) : x^k/factorial(k) @testset for order ∈ [2,4] stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order) D₁ = first_derivative(g, stencil_set) @testset "boundary x^$k" for k ∈ 0:order÷2 v = eval_on(g, x->monomial(x,k)) @testset for i ∈ 1:closure_size(D₁) x, = g[i] @test (D₁*v)[i] == monomial(x,k-1) end @testset for i ∈ (N-closure_size(D₁)+1):N x, = g[i] @test (D₁*v)[i] == monomial(x,k-1) end end @testset "interior x^$k" for k ∈ 0:order v = eval_on(g, x->monomial(x,k)) x, = g[10] @test (D₁*v)[10] == monomial(x,k-1) end end end @testset "Accuracy on function" begin @testset "1D" begin g = equidistant_grid(0., 1., 30) v = eval_on(g, x->exp(x)) @testset for (order, tol) ∈ [(2, 6e-3),(4, 2e-4)] stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order) D₁ = first_derivative(g, stencil_set) @test D₁*v ≈ v rtol=tol end end @testset "2D" begin g = equidistant_grid((0.,0.),(1.,2.), 30, 60) v = eval_on(g, (x,y)->exp(0.8x+1.2*y)) @testset for (order, tol) ∈ [(2, 6e-3),(4, 3e-4)] stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order) Dx = first_derivative(g, stencil_set, 1) Dy = first_derivative(g, stencil_set, 2) @test Dx*v ≈ 0.8v rtol=tol @test Dy*v ≈ 1.2v rtol=tol end end end end