Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/derivatives/dissipation.jl @ 2002:4300c59bbeff feature/grids/geometry_functions
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 29 Apr 2025 09:00:42 +0200 |
parents | 08f06bfacd5c |
children |
line wrap: on
line source
""" undivided_skewed04(g::TensorGrid, p, direction) undivided_skewed04(g::EquidistantGrid, p) Undivided difference operators approximating the `p`th derivative. The operators do not satisfy any SBP property and are meant to be used for building artificial dissipation terms. The operators and how they are used to create accurate artificial dissipation is described in "K. Mattsson, M. Svärd, and J. Nordström, “Stable and Accurate Artificial Dissipation,” Journal of Scientific Computing, vol. 21, no. 1, pp. 57–79, Aug. 2004" """ function undivided_skewed04 end function undivided_skewed04(g::TensorGrid, p, direction) D,Dᵀ = undivided_skewed04(g.grids[direction], p) return ( LazyTensors.inflate(D, size(g), direction), LazyTensors.inflate(Dᵀ, size(g), direction), ) end function undivided_skewed04(g::EquidistantGrid, p) T = eltype(g) interior_weights = T.(dissipation_interior_weights(p)) D = StencilOperatorDistinctClosures( g, dissipation_interior_stencil(interior_weights), dissipation_lower_closure_stencils(interior_weights), dissipation_upper_closure_stencils(interior_weights), ) Dᵀ = StencilOperatorDistinctClosures( g, dissipation_transpose_interior_stencil(interior_weights), dissipation_transpose_lower_closure_stencils(interior_weights), dissipation_transpose_upper_closure_stencils(interior_weights), ) return D, Dᵀ end function dissipation_interior_weights(p) if p == 0 return (1,) end return (0, dissipation_interior_weights(p-1)...) .- (dissipation_interior_weights(p-1)..., 0) end midpoint(weights) = length(weights)÷2 + 1 midpoint_transpose(weights) = length(weights)+1 - midpoint(weights) function dissipation_interior_stencil(weights) return Stencil(weights..., center=midpoint(weights)) end function dissipation_transpose_interior_stencil(weights) if iseven(length(weights)) weights = map(-, weights) end return Stencil(weights..., center=midpoint_transpose(weights)) end dissipation_lower_closure_size(weights) = midpoint(weights) - 1 dissipation_upper_closure_size(weights) = length(weights) - midpoint(weights) function dissipation_lower_closure_stencils(interior_weights) stencil(i) = Stencil(interior_weights..., center=i) return ntuple(i->stencil(i), dissipation_lower_closure_size(interior_weights)) end function dissipation_upper_closure_stencils(interior_weights) center(i) = length(interior_weights) - dissipation_upper_closure_size(interior_weights) + i stencil(i) = Stencil(interior_weights..., center=center(i)) return ntuple(i->stencil(i), dissipation_upper_closure_size(interior_weights)) end function dissipation_transpose_lower_closure_stencils(interior_weights) closure = ntuple(i->dissipation_transpose_lower_closure_stencil(interior_weights, i), length(interior_weights)) N = maximum(s->length(s.weights), closure) return right_pad.(closure, N) end function dissipation_transpose_upper_closure_stencils(interior_weights) closure = reverse(ntuple(i->dissipation_transpose_upper_closure_stencil(interior_weights, i), length(interior_weights))) N = maximum(s->length(s.weights), closure) return left_pad.(closure, N) end function dissipation_transpose_lower_closure_stencil(interior_weights, i) w = ntuple(k->interior_weights[i], dissipation_lower_closure_size(interior_weights)) for k ∈ i:-1:1 w = (w..., interior_weights[k]) end return Stencil(w..., center = i) end function dissipation_transpose_upper_closure_stencil(interior_weights, i) j = length(interior_weights)+1-i w = ntuple(k->interior_weights[j], dissipation_upper_closure_size(interior_weights)) for k ∈ j:1:length(interior_weights) w = (interior_weights[k], w...) end return Stencil(w..., center = length(interior_weights)-midpoint(interior_weights)+1) end