Mercurial > repos > public > sbplib_julia
view grid.jl @ 41:3d8bfb695497
Fix plotting issues in 2d
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 10 Jan 2019 16:48:49 +0100 |
parents | 5ec57ec148ef |
children | 50c6c252d954 |
line wrap: on
line source
module grid using Plots pyplot() abstract type Grid end function numberOfDimensions(grid::Grid) error("Not implemented for abstact type Grid") end function numberOfPoints(grid::Grid) error("Not implemented for abstact type Grid") end function points(grid::Grid) error("Not implemented for abstact type Grid") end # TODO: Should this be here? abstract type BoundaryId end # EquidistantGrid is a grid with equidisant grid spacing per coordinat # direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ # by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto # the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) # the domain is defined as (-1,1)x(0,2). struct EquidistantGrid <: Grid numberOfPointsPerDim::Tuple # First coordinate direction stored first, then # second, then third. limits::NTuple{2,Tuple} # Stores the two points which defines the range of # the e.g (-1,0) and (1,2) for a domain of size # (-1,1)x(0,2) # General constructor function EquidistantGrid(nPointsPerDim::Tuple, lims::NTuple{2,Tuple}) @assert length(nPointsPerDim) > 0 @assert count(x -> x > 0, nPointsPerDim) == length(nPointsPerDim) @assert length(lims[1]) == length(nPointsPerDim) @assert length(lims[2]) == length(nPointsPerDim) # TODO: Assert that the same values are not passed in both lims[1] and lims[2] # i.e the domain length is positive for all dimensions return new(nPointsPerDim, lims) end # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) end end # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid # @Return: numberOfPoints - The number of dimensions function numberOfDimensions(grid::EquidistantGrid) return length(grid.numberOfPointsPerDim) end # Computes the total number of points of an EquidistantGrid. # # @Input: grid - an EquidistantGrid # @Return: numberOfPoints - The total number of points function numberOfPoints(grid::EquidistantGrid) numberOfPoints = grid.numberOfPointsPerDim[1]; for i = 2:length(grid.numberOfPointsPerDim); numberOfPoints = numberOfPoints*grid.numberOfPointsPerDim[i] end return numberOfPoints end # Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance # between two points for each coordinate direction. # # @Input: grid - an EquidistantGrid # @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. function spacings(grid::EquidistantGrid) h̄ = Vector{Real}(undef, numberOfDimensions(grid)) for i ∈ eachindex(h̄) h̄[i] = abs(grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) end return Tuple(h̄) end # Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered # such that points in the first coordinate direction varies first, then the second # and lastely the third (if applicable) # # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) # Compute signed grid spacings dx̄ = Vector{Real}(undef, numberOfDimensions(grid)) for i ∈ eachindex(dx̄) dx̄[i] = (grid.limits[2][i]-grid.limits[1][i])/(grid.numberOfPointsPerDim[i]-1) end dx̄ = Tuple(dx̄) points = Vector{NTuple{numberOfDimensions(grid),Real}}(undef, numberOfPoints(grid)) # Compute the points based on their Cartesian indices and the signed # grid spacings cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) for i ∈ 1:numberOfPoints(grid) ci = Tuple(cartesianIndices[i]) .-1 points[i] = grid.limits[1] .+ dx̄.*ci end # TBD: Keep? this? How do we want to represent points in 1D? if numberOfDimensions(grid) == 1 points = broadcast(x -> x[1], points) end return points end function pointsalongdim(grid::EquidistantGrid, dim::Integer) @assert dim<=numberOfDimensions(grid) @assert dim>0 points = range(grid.limits[1][dim],stop=grid.limits[2][dim],length=grid.numberOfPointsPerDim[dim]) end function plotgridfunction(grid::EquidistantGrid, gridfunction) if numberOfDimensions(grid) == 1 plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) elseif numberOfDimensions(grid) == 2 x = pointsalongdim(grid,1) X = repeat(x,1,grid.numberOfPointsPerDim[2]) y = pointsalongdim(grid,2) Y = repeat(y,1,grid.numberOfPointsPerDim[1])' surface(X,Y,reshape(gridfunction)) elseif numberOfDimensions(grid) == 3 x = pointsalongdim(grid,1) X = repeat(x,1,grid.numberOfPointsPerDim[2]) y = pointsalongdim(grid,2) Y = repeat(y,1,grid.numberOfPointsPerDim[1])' y = pointsalongdim(grid,2) Y = repeat(y,1,grid.numberOfPointsPerDim[1])' surface(X,Y,gridfunction) else error(string("Plot not implemented for dimension ", string(dim))) end end # Evaluate function f on the grid g function evalOn(g::Grid, f::Function) F(x) = f(x...) return F.(points(g)) end end