Mercurial > repos > public > sbplib_julia
view src/Grids/grid.jl @ 1407:2ad518182b37 feature/grids/scalar_eval_on
Remove incorrect comment in documentation
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 22 Aug 2023 21:55:57 +0200 |
parents | efd992899896 |
children | 455e6b4c8b02 |
line wrap: on
line source
""" Grid{T,D} A grid with coordinates of type `T`, e.g. `SVector{3,Float64}`, and dimension `D`. The grid can be embedded in a higher dimension in which case the number of indices and the number of components of the coordinate vectors will be different. All grids are expected to behave as a grid function for the coordinates. `Grids` is top level abstract type for grids. A grid should implement Julia's interfaces for indexing and iteration. ## Note Importantly a grid does not have to be an `AbstractArray`. The reason is to allow flexible handling of special types of grids like multi-block grids, or grids with special indexing. """ abstract type Grid{T,D} end Base.ndims(::Grid{T,D}) where {T,D} = D Base.eltype(::Type{<:Grid{T}}) where T = T Base.getindex(g::Grid, I::CartesianIndex) = g[Tuple(I)...] """ coordinate_size(g) The lenght of the coordinate vector of `Grid` `g`. """ coordinate_size(::Type{<:Grid{T}}) where T = _ncomponents(T) coordinate_size(g::Grid) = coordinate_size(typeof(g)) # TBD: Name of this function?! """ component_type(g) The type of the components of the coordinate vector of `Grid` `g`. """ component_type(::Type{<:Grid{T}}) where T = eltype(T) component_type(g::Grid) = component_type(typeof(g)) """ refine(g::Grid, r) The grid where `g` is refined by the factor `r`. See also: [`coarsen`](@ref). """ function refine end """ coarsen(g::Grid, r) The grid where `g` is coarsened by the factor `r`. See also: [`refine`](@ref). """ function coarsen end """ boundary_identifiers(g::Grid) Identifiers for all the boundaries of `g`. """ function boundary_identifiers end """ boundary_grid(g::Grid, id::BoundaryIdentifier) The grid for the boundary specified by `id`. """ function boundary_grid end # TBD: Can we implement a version here that accepts multiple ids and grouped boundaries? Maybe we need multiblock stuff? """ eval_on(g::Grid, f) Lazy evaluation of `f` on the grid. `f` can either be on the form `f(x,y,...)` with each coordinate as an argument, or on the form `f(x̄)` taking a coordinate vector. For concrete array grid functions `map(f,g)` can be used instead. """ eval_on(g::Grid, f) = eval_on(g, f, Base.IteratorSize(g)) function eval_on(g::Grid, f, ::Base.HasShape) if hasmethod(f, (Any,)) return LazyTensors.LazyFunctionArray((I...)->f(g[I...]), size(g)) else return LazyTensors.LazyFunctionArray((I...)->f(g[I...]...), size(g)) end end """ eval_on(g::Grid, f::Number) Lazy evaluation of a scalar `f` on the grid. """ eval_on(g::Grid, f::Number) = return LazyTensors.LazyConstantArray(f, size(g)) _ncomponents(::Type{<:Number}) = 1 _ncomponents(T::Type{<:SVector}) = length(T)