Mercurial > repos > public > sbplib_julia
view test/Grids/grid_test.jl @ 1474:276c38a48aac feature/grids/componentview
Start implementing componentview
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 01 Dec 2023 13:34:03 +0100 |
parents | 86026367a9ff |
children | 62f9d0387a2a |
line wrap: on
line source
using Test using Sbplib.Grids using Sbplib.LazyTensors using StaticArrays @testset "Grid" begin struct DummyGrid{T,D} <: Grid{T,D} end @test eltype(DummyGrid{Int, 2}) == Int @test eltype(DummyGrid{Int, 2}()) == Int @test ndims(DummyGrid{Int, 2}()) == 2 @test coordinate_size(DummyGrid{Int, 1}()) == 1 @test coordinate_size(DummyGrid{SVector{3,Float64}, 2}()) == 3 @test coordinate_size(DummyGrid{SVector{3,Float64}, 2}) == 3 @testset "component_type" begin @test component_type(DummyGrid{Int,1}()) == Int @test component_type(DummyGrid{Float64,1}()) == Float64 @test component_type(DummyGrid{Rational,1}()) == Rational @test component_type(DummyGrid{SVector{3,Int},2}()) == Int @test component_type(DummyGrid{SVector{2,Float64},3}()) == Float64 @test component_type(DummyGrid{SVector{4,Rational},4}()) == Rational @test component_type(DummyGrid{Float64,1}) == Float64 @test component_type(DummyGrid{SVector{2,Float64},3}) == Float64 end end @testset "eval_on" begin @test eval_on(ZeroDimGrid(@SVector[1.,2.]), x̄->x̄[1]+x̄[2]) isa LazyArray @test eval_on(ZeroDimGrid(@SVector[1.,2.]), x̄->x̄[1]+x̄[2]) == fill(3.) @test eval_on(ZeroDimGrid(@SVector[3.,2.]), x̄->x̄[1]+x̄[2]) == fill(5.) @test eval_on(ZeroDimGrid(1.), x̄->2x̄) isa LazyArray @test eval_on(ZeroDimGrid(1.), x̄->2x̄) == fill(2.) @test eval_on(ZeroDimGrid(@SVector[1.,2.]), π) isa LazyArray @test eval_on(ZeroDimGrid(@SVector[1.,2.]), π) == fill(π) @test eval_on(EquidistantGrid(range(0,1,length=4)), x->2x) isa LazyArray @test eval_on(EquidistantGrid(range(0,1,length=4)), x->2x) == 2 .* range(0,1,length=4) g = equidistant_grid((5,3), (0.0,0.0), (2.0,1.0)) @test eval_on(g, x̄ -> 0.) isa LazyArray @test eval_on(g, x̄ -> 0.) == fill(0., (5,3)) @test eval_on(g, x̄ -> sin(x̄[1])*cos(x̄[2])) == map(x̄->sin(x̄[1])*cos(x̄[2]), g) @test eval_on(g, π) == fill(π, (5,3)) # Vector valued function @test eval_on(g, x̄ -> @SVector[x̄[2], x̄[1]]) isa LazyArray{SVector{2,Float64}} @test eval_on(g, x̄ -> @SVector[x̄[2], x̄[1]]) == map(x̄ -> @SVector[x̄[2], x̄[1]], g) # Multi-argument functions f(x,y) = sin(x)*cos(y) @test eval_on(g, f) == map(x̄->f(x̄...), g) end @testset "componentview" begin v = [@SMatrix[1 3; 2 4] .+ 100*i .+ 10*j for i ∈ 1:3, j∈ 1:4] @test componentview(v, 1, 1) == [1 .+ 100*i .+ 10*j for i ∈ 1:3, j∈ 1:4] @test componentview(v, 1, 2) == [3 .+ 100*i .+ 10*j for i ∈ 1:3, j∈ 1:4] @test componentview(v, 2, 1) == [2 .+ 100*i .+ 10*j for i ∈ 1:3, j∈ 1:4] # should work with colon # should return a view which can be index like the grid function end @testset "_ncomponents" begin @test Grids._ncomponents(Int) == 1 @test Grids._ncomponents(Float64) == 1 @test Grids._ncomponents(Rational) == 1 @test Grids._ncomponents(SVector{3,Int}) == 3 @test Grids._ncomponents(SVector{2,Float64}) == 2 @test Grids._ncomponents(SVector{4,Rational}) == 4 end